ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp221 Unicode version

Theorem simp221 1128
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp221  |-  ( ( et  /\  ( th 
/\  ( ph  /\  ps  /\  ch )  /\  ta )  /\  ze )  ->  ph )

Proof of Theorem simp221
StepHypRef Expression
1 simp21 1020 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )  /\  ta )  ->  ph )
213ad2ant2 1009 1  |-  ( ( et  /\  ( th 
/\  ( ph  /\  ps  /\  ch )  /\  ta )  /\  ze )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator