ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp21 GIF version

Theorem simp21 1030
Description: Simplification of doubly triple conjunction. (Contributed by NM, 17-Nov-2011.)
Assertion
Ref Expression
simp21 ((𝜑 ∧ (𝜓𝜒𝜃) ∧ 𝜏) → 𝜓)

Proof of Theorem simp21
StepHypRef Expression
1 simp1 997 . 2 ((𝜓𝜒𝜃) → 𝜓)
213ad2ant2 1019 1 ((𝜑 ∧ (𝜓𝜒𝜃) ∧ 𝜏) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  simpl21  1075  simpr21  1084  simp121  1129  simp221  1138  simp321  1147  mulgdirlem  13019
  Copyright terms: Public domain W3C validator