HomeHome Intuitionistic Logic Explorer
Theorem List (p. 12 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1101-1200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsimp12r 1101 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ( ch 
 /\  ( ph  /\  ps )  /\  th )  /\  ta 
 /\  et )  ->  ps )
 
Theoremsimp13l 1102 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ( ch 
 /\  th  /\  ( ph  /\ 
 ps ) )  /\  ta 
 /\  et )  ->  ph )
 
Theoremsimp13r 1103 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ( ch 
 /\  th  /\  ( ph  /\ 
 ps ) )  /\  ta 
 /\  et )  ->  ps )
 
Theoremsimp21l 1104 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ta  /\  ( ( ph  /\  ps )  /\  ch  /\  th )  /\  et )  ->  ph )
 
Theoremsimp21r 1105 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ta  /\  ( ( ph  /\  ps )  /\  ch  /\  th )  /\  et )  ->  ps )
 
Theoremsimp22l 1106 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ta  /\  ( ch  /\  ( ph  /\ 
 ps )  /\  th )  /\  et )  ->  ph )
 
Theoremsimp22r 1107 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ta  /\  ( ch  /\  ( ph  /\ 
 ps )  /\  th )  /\  et )  ->  ps )
 
Theoremsimp23l 1108 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ta  /\  ( ch  /\  th  /\  ( ph  /\  ps )
 )  /\  et )  -> 
 ph )
 
Theoremsimp23r 1109 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ta  /\  ( ch  /\  th  /\  ( ph  /\  ps )
 )  /\  et )  ->  ps )
 
Theoremsimp31l 1110 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ta  /\  et  /\  ( ( ph  /\ 
 ps )  /\  ch  /\ 
 th ) )  ->  ph )
 
Theoremsimp31r 1111 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ta  /\  et  /\  ( ( ph  /\ 
 ps )  /\  ch  /\ 
 th ) )  ->  ps )
 
Theoremsimp32l 1112 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ta  /\  et  /\  ( ch  /\  ( ph  /\  ps )  /\  th ) )  ->  ph )
 
Theoremsimp32r 1113 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ta  /\  et  /\  ( ch  /\  ( ph  /\  ps )  /\  th ) )  ->  ps )
 
Theoremsimp33l 1114 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ta  /\  et  /\  ( ch  /\  th 
 /\  ( ph  /\  ps ) ) )  ->  ph )
 
Theoremsimp33r 1115 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ta  /\  et  /\  ( ch  /\  th 
 /\  ( ph  /\  ps ) ) )  ->  ps )
 
Theoremsimp111 1116 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ( (
 ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  et  /\  ze )  ->  ph )
 
Theoremsimp112 1117 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ( (
 ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  et  /\  ze )  ->  ps )
 
Theoremsimp113 1118 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ( (
 ph  /\  ps  /\  ch )  /\  th  /\  ta )  /\  et  /\  ze )  ->  ch )
 
Theoremsimp121 1119 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ( th  /\  ( ph  /\  ps  /\ 
 ch )  /\  ta )  /\  et  /\  ze )  ->  ph )
 
Theoremsimp122 1120 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ( th  /\  ( ph  /\  ps  /\ 
 ch )  /\  ta )  /\  et  /\  ze )  ->  ps )
 
Theoremsimp123 1121 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ( th  /\  ( ph  /\  ps  /\ 
 ch )  /\  ta )  /\  et  /\  ze )  ->  ch )
 
Theoremsimp131 1122 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ( th  /\ 
 ta  /\  ( ph  /\ 
 ps  /\  ch )
 )  /\  et  /\  ze )  ->  ph )
 
Theoremsimp132 1123 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ( th  /\ 
 ta  /\  ( ph  /\ 
 ps  /\  ch )
 )  /\  et  /\  ze )  ->  ps )
 
Theoremsimp133 1124 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( ( th  /\ 
 ta  /\  ( ph  /\ 
 ps  /\  ch )
 )  /\  et  /\  ze )  ->  ch )
 
Theoremsimp211 1125 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ( ( ph  /\  ps  /\ 
 ch )  /\  th  /\ 
 ta )  /\  ze )  ->  ph )
 
Theoremsimp212 1126 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ( ( ph  /\  ps  /\ 
 ch )  /\  th  /\ 
 ta )  /\  ze )  ->  ps )
 
Theoremsimp213 1127 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ( ( ph  /\  ps  /\ 
 ch )  /\  th  /\ 
 ta )  /\  ze )  ->  ch )
 
Theoremsimp221 1128 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ( th  /\  ( ph  /\ 
 ps  /\  ch )  /\  ta )  /\  ze )  ->  ph )
 
Theoremsimp222 1129 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ( th  /\  ( ph  /\ 
 ps  /\  ch )  /\  ta )  /\  ze )  ->  ps )
 
Theoremsimp223 1130 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ( th  /\  ( ph  /\ 
 ps  /\  ch )  /\  ta )  /\  ze )  ->  ch )
 
Theoremsimp231 1131 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  /\  ze )  ->  ph )
 
Theoremsimp232 1132 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  /\  ze )  ->  ps )
 
Theoremsimp233 1133 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ( th  /\  ta  /\  ( ph  /\  ps  /\  ch ) )  /\  ze )  ->  ch )
 
Theoremsimp311 1134 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ze 
 /\  ( ( ph  /\ 
 ps  /\  ch )  /\  th  /\  ta )
 )  ->  ph )
 
Theoremsimp312 1135 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ze 
 /\  ( ( ph  /\ 
 ps  /\  ch )  /\  th  /\  ta )
 )  ->  ps )
 
Theoremsimp313 1136 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ze 
 /\  ( ( ph  /\ 
 ps  /\  ch )  /\  th  /\  ta )
 )  ->  ch )
 
Theoremsimp321 1137 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ze 
 /\  ( th  /\  ( ph  /\  ps  /\  ch )  /\  ta )
 )  ->  ph )
 
Theoremsimp322 1138 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ze 
 /\  ( th  /\  ( ph  /\  ps  /\  ch )  /\  ta )
 )  ->  ps )
 
Theoremsimp323 1139 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ze 
 /\  ( th  /\  ( ph  /\  ps  /\  ch )  /\  ta )
 )  ->  ch )
 
Theoremsimp331 1140 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ze 
 /\  ( th  /\  ta 
 /\  ( ph  /\  ps  /\ 
 ch ) ) ) 
 ->  ph )
 
Theoremsimp332 1141 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ze 
 /\  ( th  /\  ta 
 /\  ( ph  /\  ps  /\ 
 ch ) ) ) 
 ->  ps )
 
Theoremsimp333 1142 Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
 |-  ( ( et  /\  ze 
 /\  ( th  /\  ta 
 /\  ( ph  /\  ps  /\ 
 ch ) ) ) 
 ->  ch )
 
Theorem3adantl1 1143 Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ( ta 
 /\  ph  /\  ps )  /\  ch )  ->  th )
 
Theorem3adantl2 1144 Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ( ph  /\ 
 ta  /\  ps )  /\  ch )  ->  th )
 
Theorem3adantl3 1145 Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ( ph  /\ 
 ps  /\  ta )  /\  ch )  ->  th )
 
Theorem3adantr1 1146 Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ( ta  /\  ps  /\  ch ) )  ->  th )
 
Theorem3adantr2 1147 Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ( ps  /\  ta  /\  ch ) )  ->  th )
 
Theorem3adantr3 1148 Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ( ps  /\  ch  /\  ta ) )  ->  th )
 
Theorem3ad2antl1 1149 Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
 |-  ( ( ph  /\  ch )  ->  th )   =>    |-  ( ( ( ph  /\ 
 ps  /\  ta )  /\  ch )  ->  th )
 
Theorem3ad2antl2 1150 Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
 |-  ( ( ph  /\  ch )  ->  th )   =>    |-  ( ( ( ps 
 /\  ph  /\  ta )  /\  ch )  ->  th )
 
Theorem3ad2antl3 1151 Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
 |-  ( ( ph  /\  ch )  ->  th )   =>    |-  ( ( ( ps 
 /\  ta  /\  ph )  /\  ch )  ->  th )
 
Theorem3ad2antr1 1152 Deduction adding a conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.)
 |-  ( ( ph  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ( ch  /\  ps  /\  ta ) )  ->  th )
 
Theorem3ad2antr2 1153 Deduction adding a conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.)
 |-  ( ( ph  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ( ps  /\  ch  /\  ta ) )  ->  th )
 
Theorem3ad2antr3 1154 Deduction adding a conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.)
 |-  ( ( ph  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ( ps  /\  ta  /\  ch ) )  ->  th )
 
Theorem3anibar 1155 Remove a hypothesis from the second member of a biconditional. (Contributed by FL, 22-Jul-2008.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  ( th 
 <->  ( ch  /\  ta ) ) )   =>    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  ( th  <->  ta ) )
 
Theorem3mix1 1156 Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
 |-  ( ph  ->  ( ph  \/  ps  \/  ch ) )
 
Theorem3mix2 1157 Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
 |-  ( ph  ->  ( ps  \/  ph  \/  ch )
 )
 
Theorem3mix3 1158 Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
 |-  ( ph  ->  ( ps  \/  ch  \/  ph ) )
 
Theorem3mix1i 1159 Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
 |-  ph   =>    |-  ( ph  \/  ps  \/  ch )
 
Theorem3mix2i 1160 Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
 |-  ph   =>    |-  ( ps  \/  ph  \/  ch )
 
Theorem3mix3i 1161 Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
 |-  ph   =>    |-  ( ps  \/  ch  \/  ph )
 
Theorem3mix1d 1162 Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ( ps  \/  ch 
 \/  th ) )
 
Theorem3mix2d 1163 Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ( ch  \/  ps 
 \/  th ) )
 
Theorem3mix3d 1164 Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ( ch  \/  th 
 \/  ps ) )
 
Theorem3pm3.2i 1165 Infer conjunction of premises. (Contributed by NM, 10-Feb-1995.)
 |-  ph   &    |- 
 ps   &    |- 
 ch   =>    |-  ( ph  /\  ps  /\ 
 ch )
 
Theorempm3.2an3 1166 pm3.2 138 for a triple conjunction. (Contributed by Alan Sare, 24-Oct-2011.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  (
 ph  /\  ps  /\  ch ) ) ) )
 
Theorem3jca 1167 Join consequents with conjunction. (Contributed by NM, 9-Apr-1994.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   =>    |-  ( ph  ->  ( ps  /\  ch  /\  th ) )
 
Theorem3jcad 1168 Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( ps  ->  th ) )   &    |-  ( ph  ->  ( ps  ->  ta )
 )   =>    |-  ( ph  ->  ( ps  ->  ( ch  /\  th 
 /\  ta ) ) )
 
Theoremmpbir3an 1169 Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.)
 |- 
 ps   &    |- 
 ch   &    |- 
 th   &    |-  ( ph  <->  ( ps  /\  ch 
 /\  th ) )   =>    |-  ph
 
Theoremmpbir3and 1170 Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.)
 |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  ( ps  <->  ( ch  /\  th 
 /\  ta ) ) )   =>    |-  ( ph  ->  ps )
 
Theoremsyl3anbrc 1171 Syllogism inference. (Contributed by Mario Carneiro, 11-May-2014.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ta  <->  ( ps  /\  ch 
 /\  th ) )   =>    |-  ( ph  ->  ta )
 
Theoremsyl21anbrc 1172 Syllogism inference. (Contributed by Peter Mazsa, 18-Sep-2022.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ta  <->  ( ( ps 
 /\  ch )  /\  th ) )   =>    |-  ( ph  ->  ta )
 
Theorem3imp3i2an 1173 An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) (Proof shortened by Wolf Lammen, 13-Apr-2022.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   &    |-  (
 ( ph  /\  ch )  ->  ta )   &    |-  ( ( th  /\ 
 ta )  ->  et )   =>    |-  (
 ( ph  /\  ps  /\  ch )  ->  et )
 
Theorem3anim123i 1174 Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  th )   &    |-  ( ta  ->  et )   =>    |-  ( ( ph  /\  ch  /\ 
 ta )  ->  ( ps  /\  th  /\  et ) )
 
Theorem3anim1i 1175 Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ph  /\  ch  /\  th )  ->  ( ps  /\ 
 ch  /\  th )
 )
 
Theorem3anim2i 1176 Add two conjuncts to antecedent and consequent. (Contributed by AV, 21-Nov-2019.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ch  /\  ph  /\  th )  ->  ( ch  /\  ps 
 /\  th ) )
 
Theorem3anim3i 1177 Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ch  /\  th  /\  ph )  ->  ( ch 
 /\  th  /\  ps )
 )
 
Theorem3anbi123i 1178 Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   &    |-  ( ta  <->  et )   =>    |-  ( ( ph  /\  ch  /\ 
 ta )  <->  ( ps  /\  th 
 /\  et ) )
 
Theorem3orbi123i 1179 Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   &    |-  ( ta  <->  et )   =>    |-  ( ( ph  \/  ch 
 \/  ta )  <->  ( ps  \/  th 
 \/  et ) )
 
Theorem3anbi1i 1180 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ph  /\  ch  /\ 
 th )  <->  ( ps  /\  ch 
 /\  th ) )
 
Theorem3anbi2i 1181 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ch  /\  ph 
 /\  th )  <->  ( ch  /\  ps 
 /\  th ) )
 
Theorem3anbi3i 1182 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ch  /\  th 
 /\  ph )  <->  ( ch  /\  th 
 /\  ps ) )
 
Theorem3imp 1183 Importation inference. (Contributed by NM, 8-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )
 
Theorem3impa 1184 Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theoremex3 1185 Apply ex 114 to a hypothesis with a 3-right-nested conjunction antecedent, with the antecedent of the assertion being a triple conjunction rather than a 2-right-nested conjunction. (Contributed by Alan Sare, 22-Apr-2018.)
 |-  ( ( ( (
 ph  /\  ps )  /\  ch )  /\  th )  ->  ta )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  ( th  ->  ta ) )
 
Theorem3imp31 1186 The importation inference 3imp 1183 with commutation of the first and third conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ( ch 
 /\  ps  /\  ph )  ->  th )
 
Theorem3imp231 1187 Importation inference. (Contributed by Alan Sare, 17-Oct-2017.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ( ps 
 /\  ch  /\  ph )  ->  th )
 
Theorem3imp21 1188 The importation inference 3imp 1183 with commutation of the first and second conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.) (Revised to shorten 3com12 1197 by Wolf Lammen, 23-Jun-2022.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ( ps 
 /\  ph  /\  ch )  ->  th )
 
Theorem3impb 1189 Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theorem3impia 1190 Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
 |-  ( ( ph  /\  ps )  ->  ( ch  ->  th ) )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theorem3impib 1191 Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )
 
Theorem3exp 1192 Exportation inference. (Contributed by NM, 30-May-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  th )
 ) )
 
Theorem3expa 1193 Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ph  /\  ps )  /\  ch )  ->  th )
 
Theorem3expb 1194 Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ( ps 
 /\  ch ) )  ->  th )
 
Theorem3expia 1195 Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ps )  ->  ( ch  ->  th )
 )
 
Theorem3expib 1196 Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  ( ph  ->  ( ( ps 
 /\  ch )  ->  th )
 )
 
Theorem3com12 1197 Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ps  /\  ph  /\  ch )  ->  th )
 
Theorem3com13 1198 Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ch  /\  ps  /\  ph )  ->  th )
 
Theorem3com23 1199 Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ch  /\  ps )  ->  th )
 
Theorem3coml 1200 Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ps  /\  ch  /\  ph )  ->  th )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >