HomeHome Intuitionistic Logic Explorer
Theorem List (p. 12 of 114)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1101-1200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem3adantr2 1101 Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ( ps  /\  ta  /\  ch ) )  ->  th )
 
Theorem3adantr3 1102 Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ( ps  /\  ch  /\  ta ) )  ->  th )
 
Theorem3ad2antl1 1103 Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
 |-  ( ( ph  /\  ch )  ->  th )   =>    |-  ( ( ( ph  /\ 
 ps  /\  ta )  /\  ch )  ->  th )
 
Theorem3ad2antl2 1104 Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
 |-  ( ( ph  /\  ch )  ->  th )   =>    |-  ( ( ( ps 
 /\  ph  /\  ta )  /\  ch )  ->  th )
 
Theorem3ad2antl3 1105 Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
 |-  ( ( ph  /\  ch )  ->  th )   =>    |-  ( ( ( ps 
 /\  ta  /\  ph )  /\  ch )  ->  th )
 
Theorem3ad2antr1 1106 Deduction adding a conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.)
 |-  ( ( ph  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ( ch  /\  ps  /\  ta ) )  ->  th )
 
Theorem3ad2antr2 1107 Deduction adding a conjuncts to antecedent. (Contributed by NM, 27-Dec-2007.)
 |-  ( ( ph  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ( ps  /\  ch  /\  ta ) )  ->  th )
 
Theorem3ad2antr3 1108 Deduction adding a conjuncts to antecedent. (Contributed by NM, 30-Dec-2007.)
 |-  ( ( ph  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ( ps  /\  ta  /\  ch ) )  ->  th )
 
Theorem3anibar 1109 Remove a hypothesis from the second member of a biimplication. (Contributed by FL, 22-Jul-2008.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  ( th 
 <->  ( ch  /\  ta ) ) )   =>    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  ( th  <->  ta ) )
 
Theorem3mix1 1110 Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
 |-  ( ph  ->  ( ph  \/  ps  \/  ch ) )
 
Theorem3mix2 1111 Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
 |-  ( ph  ->  ( ps  \/  ph  \/  ch )
 )
 
Theorem3mix3 1112 Introduction in triple disjunction. (Contributed by NM, 4-Apr-1995.)
 |-  ( ph  ->  ( ps  \/  ch  \/  ph ) )
 
Theorem3mix1i 1113 Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
 |-  ph   =>    |-  ( ph  \/  ps  \/  ch )
 
Theorem3mix2i 1114 Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
 |-  ph   =>    |-  ( ps  \/  ph  \/  ch )
 
Theorem3mix3i 1115 Introduction in triple disjunction. (Contributed by Mario Carneiro, 6-Oct-2014.)
 |-  ph   =>    |-  ( ps  \/  ch  \/  ph )
 
Theorem3mix1d 1116 Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ( ps  \/  ch 
 \/  th ) )
 
Theorem3mix2d 1117 Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ( ch  \/  ps 
 \/  th ) )
 
Theorem3mix3d 1118 Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  ( ch  \/  th 
 \/  ps ) )
 
Theorem3pm3.2i 1119 Infer conjunction of premises. (Contributed by NM, 10-Feb-1995.)
 |-  ph   &    |- 
 ps   &    |- 
 ch   =>    |-  ( ph  /\  ps  /\ 
 ch )
 
Theorempm3.2an3 1120 pm3.2 137 for a triple conjunction. (Contributed by Alan Sare, 24-Oct-2011.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  (
 ph  /\  ps  /\  ch ) ) ) )
 
Theorem3jca 1121 Join consequents with conjunction. (Contributed by NM, 9-Apr-1994.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   =>    |-  ( ph  ->  ( ps  /\  ch  /\  th ) )
 
Theorem3jcad 1122 Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
 |-  ( ph  ->  ( ps  ->  ch ) )   &    |-  ( ph  ->  ( ps  ->  th ) )   &    |-  ( ph  ->  ( ps  ->  ta )
 )   =>    |-  ( ph  ->  ( ps  ->  ( ch  /\  th 
 /\  ta ) ) )
 
Theoremmpbir3an 1123 Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 9-Jan-2015.)
 |- 
 ps   &    |- 
 ch   &    |- 
 th   &    |-  ( ph  <->  ( ps  /\  ch 
 /\  th ) )   =>    |-  ph
 
Theoremmpbir3and 1124 Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.)
 |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  ( ps  <->  ( ch  /\  th 
 /\  ta ) ) )   =>    |-  ( ph  ->  ps )
 
Theoremsyl3anbrc 1125 Syllogism inference. (Contributed by Mario Carneiro, 11-May-2014.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ta  <->  ( ps  /\  ch 
 /\  th ) )   =>    |-  ( ph  ->  ta )
 
Theorem3anim123i 1126 Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.)
 |-  ( ph  ->  ps )   &    |-  ( ch  ->  th )   &    |-  ( ta  ->  et )   =>    |-  ( ( ph  /\  ch  /\ 
 ta )  ->  ( ps  /\  th  /\  et ) )
 
Theorem3anim1i 1127 Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ph  /\  ch  /\  th )  ->  ( ps  /\ 
 ch  /\  th )
 )
 
Theorem3anim2i 1128 Add two conjuncts to antecedent and consequent. (Contributed by AV, 21-Nov-2019.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ch  /\  ph  /\  th )  ->  ( ch  /\  ps 
 /\  th ) )
 
Theorem3anim3i 1129 Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 19-Aug-2009.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ch  /\  th  /\  ph )  ->  ( ch 
 /\  th  /\  ps )
 )
 
Theorem3anbi123i 1130 Join 3 biconditionals with conjunction. (Contributed by NM, 21-Apr-1994.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   &    |-  ( ta  <->  et )   =>    |-  ( ( ph  /\  ch  /\ 
 ta )  <->  ( ps  /\  th 
 /\  et ) )
 
Theorem3orbi123i 1131 Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.)
 |-  ( ph  <->  ps )   &    |-  ( ch  <->  th )   &    |-  ( ta  <->  et )   =>    |-  ( ( ph  \/  ch 
 \/  ta )  <->  ( ps  \/  th 
 \/  et ) )
 
Theorem3anbi1i 1132 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ph  /\  ch  /\ 
 th )  <->  ( ps  /\  ch 
 /\  th ) )
 
Theorem3anbi2i 1133 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ch  /\  ph 
 /\  th )  <->  ( ch  /\  ps 
 /\  th ) )
 
Theorem3anbi3i 1134 Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
 |-  ( ph  <->  ps )   =>    |-  ( ( ch  /\  th 
 /\  ph )  <->  ( ch  /\  th 
 /\  ps ) )
 
Theorem3imp 1135 Importation inference. (Contributed by NM, 8-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )   =>    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )
 
Theorem3impa 1136 Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.)
 |-  ( ( ( ph  /\ 
 ps )  /\  ch )  ->  th )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theorem3impb 1137 Importation from double to triple conjunction. (Contributed by NM, 20-Aug-1995.)
 |-  ( ( ph  /\  ( ps  /\  ch ) ) 
 ->  th )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theorem3impia 1138 Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
 |-  ( ( ph  /\  ps )  ->  ( ch  ->  th ) )   =>    |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )
 
Theorem3impib 1139 Importation to triple conjunction. (Contributed by NM, 13-Jun-2006.)
 |-  ( ph  ->  (
 ( ps  /\  ch )  ->  th ) )   =>    |-  ( ( ph  /\ 
 ps  /\  ch )  ->  th )
 
Theorem3exp 1140 Exportation inference. (Contributed by NM, 30-May-1994.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  th )
 ) )
 
Theorem3expa 1141 Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ph  /\  ps )  /\  ch )  ->  th )
 
Theorem3expb 1142 Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ( ps 
 /\  ch ) )  ->  th )
 
Theorem3expia 1143 Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ps )  ->  ( ch  ->  th )
 )
 
Theorem3expib 1144 Exportation from triple conjunction. (Contributed by NM, 19-May-2007.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  ( ph  ->  ( ( ps 
 /\  ch )  ->  th )
 )
 
Theorem3com12 1145 Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.) (Proof shortened by Andrew Salmon, 13-May-2011.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ps  /\  ph  /\  ch )  ->  th )
 
Theorem3com13 1146 Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ch  /\  ps  /\  ph )  ->  th )
 
Theorem3com23 1147 Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ch  /\  ps )  ->  th )
 
Theorem3coml 1148 Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ps  /\  ch  /\  ph )  ->  th )
 
Theorem3comr 1149 Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ch  /\  ph  /\  ps )  ->  th )
 
Theorem3adant3r1 1150 Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Feb-2008.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ( ta 
 /\  ps  /\  ch )
 )  ->  th )
 
Theorem3adant3r2 1151 Deduction adding a conjunct to antecedent. (Contributed by NM, 17-Feb-2008.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ( ps 
 /\  ta  /\  ch )
 )  ->  th )
 
Theorem3adant3r3 1152 Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ( ps 
 /\  ch  /\  ta )
 )  ->  th )
 
Theorem3an1rs 1153 Swap conjuncts. (Contributed by NM, 16-Dec-2007.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  th )  ->  ta )   =>    |-  (
 ( ( ph  /\  ps  /\ 
 th )  /\  ch )  ->  ta )
 
Theorem3imp1 1154 Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ( (
 ph  /\  ps  /\  ch )  /\  th )  ->  ta )
 
Theorem3impd 1155 Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ph  ->  ( ( ps  /\  ch  /\ 
 th )  ->  ta )
 )
 
Theorem3imp2 1156 Importation to right triple conjunction. (Contributed by NM, 26-Oct-2006.)
 |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )   =>    |-  ( ( ph  /\  ( ps  /\  ch  /\ 
 th ) )  ->  ta )
 
Theorem3exp1 1157 Exportation from left triple conjunction. (Contributed by NM, 24-Feb-2005.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  th )  ->  ta )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
 
Theorem3expd 1158 Exportation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.)
 |-  ( ph  ->  (
 ( ps  /\  ch  /\ 
 th )  ->  ta )
 )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta )
 ) ) )
 
Theorem3exp2 1159 Exportation from right triple conjunction. (Contributed by NM, 26-Oct-2006.)
 |-  ( ( ph  /\  ( ps  /\  ch  /\  th ) )  ->  ta )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
 
Theoremexp5o 1160 A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  (
 ( th  /\  ta )  ->  et ) )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et ) ) ) ) )
 
Theoremexp516 1161 A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
 |-  ( ( ( ph  /\  ( ps  /\  ch  /\ 
 th ) )  /\  ta )  ->  et )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
 ) ) ) )
 
Theoremexp520 1162 A triple exportation inference. (Contributed by Jeff Hankins, 8-Jul-2009.)
 |-  ( ( ( ph  /\ 
 ps  /\  ch )  /\  ( th  /\  ta ) )  ->  et )   =>    |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ( ta  ->  et )
 ) ) ) )
 
Theorem3anassrs 1163 Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( ( ph  /\  ( ps  /\  ch  /\  th ) )  ->  ta )   =>    |-  (
 ( ( ( ph  /\ 
 ps )  /\  ch )  /\  th )  ->  ta )
 
Theorem3adant1l 1164 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ta  /\  ph )  /\  ps  /\  ch )  ->  th )
 
Theorem3adant1r 1165 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ( ph  /\  ta )  /\  ps  /\  ch )  ->  th )
 
Theorem3adant2l 1166 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ( ta 
 /\  ps )  /\  ch )  ->  th )
 
Theorem3adant2r 1167 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ( ps 
 /\  ta )  /\  ch )  ->  th )
 
Theorem3adant3l 1168 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ps  /\  ( ta  /\  ch )
 )  ->  th )
 
Theorem3adant3r 1169 Deduction adding a conjunct to antecedent. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ph  /\  ps  /\ 
 ch )  ->  th )   =>    |-  (
 ( ph  /\  ps  /\  ( ch  /\  ta )
 )  ->  th )
 
Theoremsyl12anc 1170 Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ( ps 
 /\  ( ch  /\  th ) )  ->  ta )   =>    |-  ( ph  ->  ta )
 
Theoremsyl21anc 1171 Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ( ( ps  /\  ch )  /\  th )  ->  ta )   =>    |-  ( ph  ->  ta )
 
Theoremsyl3anc 1172 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ( ps 
 /\  ch  /\  th )  ->  ta )   =>    |-  ( ph  ->  ta )
 
Theoremsyl22anc 1173 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta ) )  ->  et )   =>    |-  ( ph  ->  et )
 
Theoremsyl13anc 1174 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ( ps 
 /\  ( ch  /\  th 
 /\  ta ) )  ->  et )   =>    |-  ( ph  ->  et )
 
Theoremsyl31anc 1175 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ta )  ->  et )   =>    |-  ( ph  ->  et )
 
Theoremsyl112anc 1176 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ( ps 
 /\  ch  /\  ( th  /\ 
 ta ) )  ->  et )   =>    |-  ( ph  ->  et )
 
Theoremsyl121anc 1177 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ( ps 
 /\  ( ch  /\  th )  /\  ta )  ->  et )   =>    |-  ( ph  ->  et )
 
Theoremsyl211anc 1178 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ( ( ps  /\  ch )  /\  th  /\  ta )  ->  et )   =>    |-  ( ph  ->  et )
 
Theoremsyl23anc 1179 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta  /\ 
 et ) )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl32anc 1180 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ( ta 
 /\  et ) )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl122anc 1181 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ps 
 /\  ( ch  /\  th )  /\  ( ta 
 /\  et ) )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl212anc 1182 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ( ps  /\  ch )  /\  th  /\  ( ta 
 /\  et ) )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl221anc 1183 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta )  /\  et )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl113anc 1184 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ps 
 /\  ch  /\  ( th  /\ 
 ta  /\  et )
 )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl131anc 1185 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ps 
 /\  ( ch  /\  th 
 /\  ta )  /\  et )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl311anc 1186 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ta  /\  et )  ->  ze )   =>    |-  ( ph  ->  ze )
 
Theoremsyl33anc 1187 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ( ta 
 /\  et  /\  ze )
 )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl222anc 1188 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta )  /\  ( et  /\  ze ) )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl123anc 1189 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ps 
 /\  ( ch  /\  th )  /\  ( ta 
 /\  et  /\  ze )
 )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl132anc 1190 Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ps 
 /\  ( ch  /\  th 
 /\  ta )  /\  ( et  /\  ze ) ) 
 ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl213anc 1191 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ( ps  /\  ch )  /\  th  /\  ( ta 
 /\  et  /\  ze )
 )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl231anc 1192 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta  /\ 
 et )  /\  ze )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl312anc 1193 Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ta  /\  ( et  /\  ze )
 )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl321anc 1194 Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ( ta 
 /\  et )  /\  ze )  ->  si )   =>    |-  ( ph  ->  si )
 
Theoremsyl133anc 1195 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ( ps 
 /\  ( ch  /\  th 
 /\  ta )  /\  ( et  /\  ze  /\  si ) )  ->  rh )   =>    |-  ( ph  ->  rh )
 
Theoremsyl313anc 1196 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ta  /\  ( et  /\  ze  /\  si ) )  ->  rh )   =>    |-  ( ph  ->  rh )
 
Theoremsyl331anc 1197 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ( ta 
 /\  et  /\  ze )  /\  si )  ->  rh )   =>    |-  ( ph  ->  rh )
 
Theoremsyl223anc 1198 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta )  /\  ( et  /\  ze 
 /\  si ) )  ->  rh )   =>    |-  ( ph  ->  rh )
 
Theoremsyl232anc 1199 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta  /\ 
 et )  /\  ( ze  /\  si ) ) 
 ->  rh )   =>    |-  ( ph  ->  rh )
 
Theoremsyl322anc 1200 Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
 |-  ( ph  ->  ps )   &    |-  ( ph  ->  ch )   &    |-  ( ph  ->  th )   &    |-  ( ph  ->  ta )   &    |-  ( ph  ->  et )   &    |-  ( ph  ->  ze )   &    |-  ( ph  ->  si )   &    |-  ( ( ( ps  /\  ch  /\  th )  /\  ( ta 
 /\  et )  /\  ( ze  /\  si ) ) 
 ->  rh )   =>    |-  ( ph  ->  rh )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11394
  Copyright terms: Public domain < Previous  Next >