Theorem List for Intuitionistic Logic Explorer - 1101-1200   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | simp2r1 1101 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                     
      
         | 
|   | 
| Theorem | simp2r2 1102 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                     
      
         | 
|   | 
| Theorem | simp2r3 1103 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                     
      
         | 
|   | 
| Theorem | simp3l1 1104 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                     
               | 
|   | 
| Theorem | simp3l2 1105 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                     
               | 
|   | 
| Theorem | simp3l3 1106 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                     
               | 
|   | 
| Theorem | simp3r1 1107 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp3r2 1108 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp3r3 1109 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp11l 1110 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
         
                           | 
|   | 
| Theorem | simp11r 1111 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
         
                           | 
|   | 
| Theorem | simp12l 1112 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp12r 1113 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp13l 1114 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
          
                          | 
|   | 
| Theorem | simp13r 1115 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
          
                          | 
|   | 
| Theorem | simp21l 1116 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp21r 1117 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp22l 1118 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp22r 1119 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp23l 1120 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                           
         | 
|   | 
| Theorem | simp23r 1121 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                           
         | 
|   | 
| Theorem | simp31l 1122 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp31r 1123 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp32l 1124 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp32r 1125 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp33l 1126 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp33r 1127 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    | 
|   | 
| Theorem | simp111 1128 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
         
                               | 
|   | 
| Theorem | simp112 1129 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
         
                               | 
|   | 
| Theorem | simp113 1130 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
         
                               | 
|   | 
| Theorem | simp121 1131 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp122 1132 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp123 1133 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp131 1134 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
            
         
      
             | 
|   | 
| Theorem | simp132 1135 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
            
         
      
             | 
|   | 
| Theorem | simp133 1136 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
            
         
      
             | 
|   | 
| Theorem | simp211 1137 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp212 1138 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp213 1139 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp221 1140 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                     
                   | 
|   | 
| Theorem | simp222 1141 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                     
                   | 
|   | 
| Theorem | simp223 1142 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                     
                   | 
|   | 
| Theorem | simp231 1143 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp232 1144 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp233 1145 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp311 1146 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                     
               
    | 
|   | 
| Theorem | simp312 1147 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                     
               
    | 
|   | 
| Theorem | simp313 1148 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                     
               
    | 
|   | 
| Theorem | simp321 1149 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    
    | 
|   | 
| Theorem | simp322 1150 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    
    | 
|   | 
| Theorem | simp323 1151 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                    
    | 
|   | 
| Theorem | simp331 1152 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp332 1153 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | simp333 1154 | 
Simplification of conjunction.  (Contributed by NM, 9-Mar-2012.)
 | 
                                        | 
|   | 
| Theorem | 3adantl1 1155 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       24-Feb-2005.)
 | 
                                                      | 
|   | 
| Theorem | 3adantl2 1156 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       24-Feb-2005.)
 | 
                                        
              | 
|   | 
| Theorem | 3adantl3 1157 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       24-Feb-2005.)
 | 
                                        
              | 
|   | 
| Theorem | 3adantr1 1158 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       27-Apr-2005.)
 | 
                                                
      | 
|   | 
| Theorem | 3adantr2 1159 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       27-Apr-2005.)
 | 
                                                
      | 
|   | 
| Theorem | 3adantr3 1160 | 
Deduction adding a conjunct to antecedent.  (Contributed by NM,
       27-Apr-2005.)
 | 
                                                
      | 
|   | 
| Theorem | 3ad2antl1 1161 | 
Deduction adding conjuncts to antecedent.  (Contributed by NM,
       4-Aug-2007.)
 | 
                                  
              | 
|   | 
| Theorem | 3ad2antl2 1162 | 
Deduction adding conjuncts to antecedent.  (Contributed by NM,
       4-Aug-2007.)
 | 
                                                | 
|   | 
| Theorem | 3ad2antl3 1163 | 
Deduction adding conjuncts to antecedent.  (Contributed by NM,
       4-Aug-2007.)
 | 
                                
                | 
|   | 
| Theorem | 3ad2antr1 1164 | 
Deduction adding a conjuncts to antecedent.  (Contributed by NM,
       25-Dec-2007.)
 | 
                                          
      | 
|   | 
| Theorem | 3ad2antr2 1165 | 
Deduction adding a conjuncts to antecedent.  (Contributed by NM,
       27-Dec-2007.)
 | 
                                          
      | 
|   | 
| Theorem | 3ad2antr3 1166 | 
Deduction adding a conjuncts to antecedent.  (Contributed by NM,
       30-Dec-2007.)
 | 
                                          
      | 
|   | 
| Theorem | 3anibar 1167 | 
Remove a hypothesis from the second member of a biconditional.
       (Contributed by FL, 22-Jul-2008.)
 | 
                                                 
               | 
|   | 
| Theorem | 3mix1 1168 | 
Introduction in triple disjunction.  (Contributed by NM, 4-Apr-1995.)
 | 
                    | 
|   | 
| Theorem | 3mix2 1169 | 
Introduction in triple disjunction.  (Contributed by NM, 4-Apr-1995.)
 | 
             
       | 
|   | 
| Theorem | 3mix3 1170 | 
Introduction in triple disjunction.  (Contributed by NM, 4-Apr-1995.)
 | 
                    | 
|   | 
| Theorem | 3mix1i 1171 | 
Introduction in triple disjunction.  (Contributed by Mario Carneiro,
       6-Oct-2014.)
 | 
                        | 
|   | 
| Theorem | 3mix2i 1172 | 
Introduction in triple disjunction.  (Contributed by Mario Carneiro,
       6-Oct-2014.)
 | 
                        | 
|   | 
| Theorem | 3mix3i 1173 | 
Introduction in triple disjunction.  (Contributed by Mario Carneiro,
       6-Oct-2014.)
 | 
                        | 
|   | 
| Theorem | 3mix1d 1174 | 
Deduction introducing triple disjunction.  (Contributed by Scott Fenton,
       8-Jun-2011.)
 | 
                                    | 
|   | 
| Theorem | 3mix2d 1175 | 
Deduction introducing triple disjunction.  (Contributed by Scott Fenton,
       8-Jun-2011.)
 | 
                                    | 
|   | 
| Theorem | 3mix3d 1176 | 
Deduction introducing triple disjunction.  (Contributed by Scott Fenton,
       8-Jun-2011.)
 | 
                                    | 
|   | 
| Theorem | 3pm3.2i 1177 | 
Infer conjunction of premises.  (Contributed by NM, 10-Feb-1995.)
 | 
                                            | 
|   | 
| Theorem | pm3.2an3 1178 | 
pm3.2 139 for a triple conjunction.  (Contributed by
Alan Sare,
     24-Oct-2011.)
 | 
                     
           | 
|   | 
| Theorem | 3jca 1179 | 
Join consequents with conjunction.  (Contributed by NM, 9-Apr-1994.)
 | 
                                                                    | 
|   | 
| Theorem | 3jcad 1180 | 
Deduction conjoining the consequents of three implications.
       (Contributed by NM, 25-Sep-2005.)
 | 
                                                       
                                     | 
|   | 
| Theorem | mpbir3an 1181 | 
Detach a conjunction of truths in a biconditional.  (Contributed by NM,
       16-Sep-2011.)  (Revised by NM, 9-Jan-2015.)
 | 
                                                            | 
|   | 
| Theorem | mpbir3and 1182 | 
Detach a conjunction of truths in a biconditional.  (Contributed by
       Mario Carneiro, 11-May-2014.)
 | 
                                                                                      
    | 
|   | 
| Theorem | syl3anbrc 1183 | 
Syllogism inference.  (Contributed by Mario Carneiro, 11-May-2014.)
 | 
                                                                                    | 
|   | 
| Theorem | syl21anbrc 1184 | 
Syllogism inference.  (Contributed by Peter Mazsa, 18-Sep-2022.)
 | 
                                                                                      | 
|   | 
| Theorem | 3imp3i2an 1185 | 
An elimination deduction.  (Contributed by Alan Sare, 17-Oct-2017.)
       (Proof shortened by Wolf Lammen, 13-Apr-2022.)
 | 
                               
                                            
           
    | 
|   | 
| Theorem | 3anim123i 1186 | 
Join antecedents and consequents with conjunction.  (Contributed by NM,
       8-Apr-1994.)
 | 
                                                                              | 
|   | 
| Theorem | 3anim1i 1187 | 
Add two conjuncts to antecedent and consequent.  (Contributed by Jeff
       Hankins, 16-Aug-2009.)
 | 
                     
           
         
     | 
|   | 
| Theorem | 3anim2i 1188 | 
Add two conjuncts to antecedent and consequent.  (Contributed by AV,
       21-Nov-2019.)
 | 
                                              | 
|   | 
| Theorem | 3anim3i 1189 | 
Add two conjuncts to antecedent and consequent.  (Contributed by Jeff
       Hankins, 19-Aug-2009.)
 | 
                              
         
       | 
|   | 
| Theorem | 3anbi123i 1190 | 
Join 3 biconditionals with conjunction.  (Contributed by NM,
       21-Apr-1994.)
 | 
                                                                              | 
|   | 
| Theorem | 3orbi123i 1191 | 
Join 3 biconditionals with disjunction.  (Contributed by NM,
       17-May-1994.)
 | 
                                                                              | 
|   | 
| Theorem | 3anbi1i 1192 | 
Inference adding two conjuncts to each side of a biconditional.
       (Contributed by NM, 8-Sep-2006.)
 | 
                                              | 
|   | 
| Theorem | 3anbi2i 1193 | 
Inference adding two conjuncts to each side of a biconditional.
       (Contributed by NM, 8-Sep-2006.)
 | 
                                              | 
|   | 
| Theorem | 3anbi3i 1194 | 
Inference adding two conjuncts to each side of a biconditional.
       (Contributed by NM, 8-Sep-2006.)
 | 
                                              | 
|   | 
| Theorem | 3imp 1195 | 
Importation inference.  (Contributed by NM, 8-Apr-1994.)
 | 
                                       
         | 
|   | 
| Theorem | 3impa 1196 | 
Importation from double to triple conjunction.  (Contributed by NM,
       20-Aug-1995.)
 | 
                                                | 
|   | 
| Theorem | ex3 1197 | 
Apply ex 115 to a hypothesis with a 3-right-nested
conjunction antecedent,
       with the antecedent of the assertion being a triple conjunction rather
       than a 2-right-nested conjunction.  (Contributed by Alan Sare,
       22-Apr-2018.)
 | 
         
                                                   | 
|   | 
| Theorem | 3imp31 1198 | 
The importation inference 3imp 1195 with commutation of the first and third
       conjuncts of the assertion relative to the hypothesis.  (Contributed by
       Alan Sare, 11-Sep-2016.)
 | 
                                     
           | 
|   | 
| Theorem | 3imp231 1199 | 
Importation inference.  (Contributed by Alan Sare, 17-Oct-2017.)
 | 
                                     
           | 
|   | 
| Theorem | 3imp21 1200 | 
The importation inference 3imp 1195 with commutation of the first and
       second conjuncts of the assertion relative to the hypothesis.
       (Contributed by Alan Sare, 11-Sep-2016.)  (Revised to shorten 3com12 1209
       by Wolf Lammen, 23-Jun-2022.)
 | 
                                                |