Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  stdcndcOLD Unicode version

Theorem stdcndcOLD 832
 Description: Obsolete version of stdcndc 831 as of 28-Oct-2023. (Contributed by David A. Wheeler, 13-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
stdcndcOLD STAB DECID DECID

Proof of Theorem stdcndcOLD
StepHypRef Expression
1 exmiddc 822 . . . . . 6 DECID
21adantl 275 . . . . 5 STAB DECID
3 df-stab 817 . . . . . . . 8 STAB
43biimpi 119 . . . . . . 7 STAB
54orim2d 778 . . . . . 6 STAB
65adantr 274 . . . . 5 STAB DECID
72, 6mpd 13 . . . 4 STAB DECID
87orcomd 719 . . 3 STAB DECID
9 df-dc 821 . . 3 DECID
108, 9sylibr 133 . 2 STAB DECID DECID
11 dcstab 830 . . 3 DECID STAB
12 dcn 828 . . 3 DECID DECID
1311, 12jca 304 . 2 DECID STAB DECID
1410, 13impbii 125 1 STAB DECID DECID
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 103   wb 104   wo 698  STAB wstab 816  DECID wdc 820 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator