Proof of Theorem stdcndcOLD
| Step | Hyp | Ref
 | Expression | 
| 1 |   | exmiddc 837 | 
. . . . . 6
⊢
(DECID ¬ 𝜑 → (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | 
| 2 | 1 | adantl 277 | 
. . . . 5
⊢
((STAB 𝜑 ∧ DECID ¬ 𝜑) → (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | 
| 3 |   | df-stab 832 | 
. . . . . . . 8
⊢
(STAB 𝜑
↔ (¬ ¬ 𝜑 →
𝜑)) | 
| 4 | 3 | biimpi 120 | 
. . . . . . 7
⊢
(STAB 𝜑
→ (¬ ¬ 𝜑 →
𝜑)) | 
| 5 | 4 | orim2d 789 | 
. . . . . 6
⊢
(STAB 𝜑
→ ((¬ 𝜑 ∨ ¬
¬ 𝜑) → (¬ 𝜑 ∨ 𝜑))) | 
| 6 | 5 | adantr 276 | 
. . . . 5
⊢
((STAB 𝜑 ∧ DECID ¬ 𝜑) → ((¬ 𝜑 ∨ ¬ ¬ 𝜑) → (¬ 𝜑 ∨ 𝜑))) | 
| 7 | 2, 6 | mpd 13 | 
. . . 4
⊢
((STAB 𝜑 ∧ DECID ¬ 𝜑) → (¬ 𝜑 ∨ 𝜑)) | 
| 8 | 7 | orcomd 730 | 
. . 3
⊢
((STAB 𝜑 ∧ DECID ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑)) | 
| 9 |   | df-dc 836 | 
. . 3
⊢
(DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | 
| 10 | 8, 9 | sylibr 134 | 
. 2
⊢
((STAB 𝜑 ∧ DECID ¬ 𝜑) → DECID
𝜑) | 
| 11 |   | dcstab 845 | 
. . 3
⊢
(DECID 𝜑 → STAB 𝜑) | 
| 12 |   | dcn 843 | 
. . 3
⊢
(DECID 𝜑 → DECID ¬ 𝜑) | 
| 13 | 11, 12 | jca 306 | 
. 2
⊢
(DECID 𝜑 → (STAB 𝜑 ∧ DECID ¬ 𝜑)) | 
| 14 | 10, 13 | impbii 126 | 
1
⊢
((STAB 𝜑 ∧ DECID ¬ 𝜑) ↔ DECID
𝜑) |