ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim2d Unicode version

Theorem orim2d 789
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
orim2d  |-  ( ph  ->  ( ( th  \/  ps )  ->  ( th  \/  ch ) ) )

Proof of Theorem orim2d
StepHypRef Expression
1 idd 21 . 2  |-  ( ph  ->  ( th  ->  th )
)
2 orim1d.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2orim12d 787 1  |-  ( ph  ->  ( ( th  \/  ps )  ->  ( th  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orim2  790  orbi2d  791  pm2.82  813  stdcndcOLD  847  pm2.13dc  886  exmid1dc  4243  acexmidlemcase  5929  poxp  6308  fodjuomnilemdc  7228  omniwomnimkv  7251  exmidontriimlem1  7315  indpi  7437  suplocexprlemloc  7816  nneoor  9457  uzp1  9664  maxabslemlub  11437  xrmaxiflemlub  11478  nninfctlemfo  12280  exmidunben  12716  bj-nn0suc  15764  sbthomlem  15828
  Copyright terms: Public domain W3C validator