ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim2d Unicode version

Theorem orim2d 778
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
orim2d  |-  ( ph  ->  ( ( th  \/  ps )  ->  ( th  \/  ch ) ) )

Proof of Theorem orim2d
StepHypRef Expression
1 idd 21 . 2  |-  ( ph  ->  ( th  ->  th )
)
2 orim1d.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2orim12d 776 1  |-  ( ph  ->  ( ( th  \/  ps )  ->  ( th  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  orim2  779  orbi2d  780  pm2.82  802  stdcndcOLD  832  pm2.13dc  871  exmid1dc  4161  acexmidlemcase  5816  poxp  6176  fodjuomnilemdc  7081  omniwomnimkv  7104  exmidontriimlem1  7150  indpi  7256  suplocexprlemloc  7635  nneoor  9260  uzp1  9466  maxabslemlub  11100  xrmaxiflemlub  11138  exmidunben  12138  bj-nn0suc  13510  sbthomlem  13567
  Copyright terms: Public domain W3C validator