ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim2d Unicode version

Theorem orim2d 790
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
orim2d  |-  ( ph  ->  ( ( th  \/  ps )  ->  ( th  \/  ch ) ) )

Proof of Theorem orim2d
StepHypRef Expression
1 idd 21 . 2  |-  ( ph  ->  ( th  ->  th )
)
2 orim1d.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2orim12d 788 1  |-  ( ph  ->  ( ( th  \/  ps )  ->  ( th  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orim2  791  orbi2d  792  pm2.82  814  stdcndcOLD  848  pm2.13dc  887  exmid1dc  4252  acexmidlemcase  5952  poxp  6331  fodjuomnilemdc  7261  omniwomnimkv  7284  exmidontriimlem1  7349  indpi  7475  suplocexprlemloc  7854  nneoor  9495  uzp1  9702  maxabslemlub  11593  xrmaxiflemlub  11634  nninfctlemfo  12436  exmidunben  12872  bj-nn0suc  16038  sbthomlem  16105
  Copyright terms: Public domain W3C validator