ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim2d Unicode version

Theorem orim2d 737
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
orim2d  |-  ( ph  ->  ( ( th  \/  ps )  ->  ( th  \/  ch ) ) )

Proof of Theorem orim2d
StepHypRef Expression
1 idd 21 . 2  |-  ( ph  ->  ( th  ->  th )
)
2 orim1d.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2orim12d 735 1  |-  ( ph  ->  ( ( th  \/  ps )  ->  ( th  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 664
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  orim2  738  orbi2d  739  pm2.82  761  pm2.13dc  817  stabtestimpdc  862  acexmidlemcase  5647  poxp  5997  fodjuomnilemdc  6799  indpi  6901  nneoor  8848  uzp1  9052  maxabslemlub  10640  bj-nn0suc  11859
  Copyright terms: Public domain W3C validator