ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an1br Unicode version

Theorem syl3an1br 1267
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an1br.1  |-  ( ps  <->  ph )
syl3an1br.2  |-  ( ( ps  /\  ch  /\  th )  ->  ta )
Assertion
Ref Expression
syl3an1br  |-  ( (
ph  /\  ch  /\  th )  ->  ta )

Proof of Theorem syl3an1br
StepHypRef Expression
1 syl3an1br.1 . . 3  |-  ( ps  <->  ph )
21biimpri 132 . 2  |-  ( ph  ->  ps )
3 syl3an1br.2 . 2  |-  ( ( ps  /\  ch  /\  th )  ->  ta )
42, 3syl3an1 1261 1  |-  ( (
ph  /\  ch  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator