| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl3an1 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| syl3an1.1 | 
 | 
| syl3an1.2 | 
 | 
| Ref | Expression | 
|---|---|
| syl3an1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3an1.1 | 
. . 3
 | |
| 2 | 1 | 3anim1i 1187 | 
. 2
 | 
| 3 | syl3an1.2 | 
. 2
 | |
| 4 | 2, 3 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: syl3an1b 1285 syl3an1br 1288 wepo 4394 f1ofveu 5910 fovcdmda 6067 smoiso 6360 tfrcl 6422 omv 6513 oeiv 6514 nndi 6544 nnmsucr 6546 f1oen2g 6814 f1dom2g 6815 undiffi 6986 prarloclemarch2 7486 distrnq0 7526 ltprordil 7656 1idprl 7657 1idpru 7658 ltpopr 7662 ltexprlemopu 7670 ltexprlemdisj 7673 ltexprlemfl 7676 ltexprlemfu 7678 ltexprlemru 7679 recexprlemdisj 7697 recexprlemss1l 7702 recexprlemss1u 7703 cnegexlem1 8201 msqge0 8643 mulge0 8646 divnegap 8733 divdiv32ap 8747 divneg2ap 8763 peano2uz 9657 lbzbi 9690 negqmod0 10423 modqmuladdnn0 10460 expnlbnd 10756 shftfvalg 10983 xrmaxaddlem 11425 retanclap 11887 tannegap 11893 demoivreALT 11939 gcd0id 12146 isprm3 12286 euclemma 12314 phiprmpw 12390 fermltl 12402 sgrpcl 13052 mndcl 13064 grpcl 13140 dfgrp2 13159 grprcan 13169 grpsubcl 13212 imasgrp2 13240 mhmid 13245 mhmmnd 13246 mulginvcom 13277 mulgnndir 13281 mulgnnass 13287 qusgrp 13362 ghmmulg 13386 ghmrn 13387 ghmeqker 13401 ablcom 13433 ablinvadd 13440 ghmcmn 13457 rngacl 13498 rngpropd 13511 srgacl 13538 srgcom 13539 ringacl 13586 imasring 13620 subrngacl 13764 subrgacl 13788 subrgugrp 13796 lmodacl 13855 lmodmcl 13856 lmodvacl 13858 lmodvsubcl 13888 lmod4 13893 lmodvaddsub4 13895 lmodvpncan 13896 lmodvnpcan 13897 lmodsubeq0 13902 psmetcl 14562 xmetcl 14588 metcl 14589 meteq0 14596 metge0 14602 metsym 14607 blelrnps 14655 blelrn 14656 blssm 14657 blres 14670 mscl 14701 xmscl 14702 xmsge0 14703 xmseq0 14704 xmssym 14705 mopnin 14723 sincosq1sgn 15062 sincosq2sgn 15063 sincosq3sgn 15064 sincosq4sgn 15065 lgsneg1 15266 | 
| Copyright terms: Public domain | W3C validator |