| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an1 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an1.1 |
|
| syl3an1.2 |
|
| Ref | Expression |
|---|---|
| syl3an1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an1.1 |
. . 3
| |
| 2 | 1 | 3anim1i 1209 |
. 2
|
| 3 | syl3an1.2 |
. 2
| |
| 4 | 2, 3 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: syl3an1b 1307 syl3an1br 1310 wepo 4450 f1ofveu 5989 fovcdmda 6149 smoiso 6448 tfrcl 6510 omv 6601 oeiv 6602 nndi 6632 nnmsucr 6634 f1oen2g 6906 f1dom2g 6907 undiffi 7087 prarloclemarch2 7606 distrnq0 7646 ltprordil 7776 1idprl 7777 1idpru 7778 ltpopr 7782 ltexprlemopu 7790 ltexprlemdisj 7793 ltexprlemfl 7796 ltexprlemfu 7798 ltexprlemru 7799 recexprlemdisj 7817 recexprlemss1l 7822 recexprlemss1u 7823 cnegexlem1 8321 msqge0 8763 mulge0 8766 divnegap 8853 divdiv32ap 8867 divneg2ap 8883 peano2uz 9778 lbzbi 9811 negqmod0 10553 modqmuladdnn0 10590 expnlbnd 10886 fun2dmnop 11070 shftfvalg 11329 xrmaxaddlem 11771 retanclap 12233 tannegap 12239 demoivreALT 12285 gcd0id 12500 isprm3 12640 euclemma 12668 phiprmpw 12744 fermltl 12756 sgrpcl 13442 mndcl 13456 imasmnd2 13485 grpcl 13541 dfgrp2 13560 grprcan 13570 grpsubcl 13613 imasgrp2 13647 mhmid 13652 mhmmnd 13653 mulginvcom 13684 mulgnndir 13688 mulgnnass 13694 qusgrp 13769 ghmmulg 13793 ghmrn 13794 ghmeqker 13808 ablcom 13840 ablinvadd 13847 ghmcmn 13864 rngacl 13905 rngpropd 13918 srgacl 13945 srgcom 13946 ringacl 13993 imasring 14027 subrngacl 14172 subrgacl 14196 subrgugrp 14204 lmodacl 14263 lmodmcl 14264 lmodvacl 14266 lmodvsubcl 14296 lmod4 14301 lmodvaddsub4 14303 lmodvpncan 14304 lmodvnpcan 14305 lmodsubeq0 14310 psmetcl 15000 xmetcl 15026 metcl 15027 meteq0 15034 metge0 15040 metsym 15045 blelrnps 15093 blelrn 15094 blssm 15095 blres 15108 mscl 15139 xmscl 15140 xmsge0 15141 xmseq0 15142 xmssym 15143 mopnin 15161 sincosq1sgn 15500 sincosq2sgn 15501 sincosq3sgn 15502 sincosq4sgn 15503 lgsneg1 15704 usgredg2vtx 16015 uspgredg2vtxeu 16016 usgredg2vtxeu 16017 |
| Copyright terms: Public domain | W3C validator |