![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3an1 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an1.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3an1.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl3an1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an1.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3anim1i 1187 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl3an1.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: syl3an1b 1285 syl3an1br 1288 wepo 4391 f1ofveu 5907 fovcdmda 6064 smoiso 6357 tfrcl 6419 omv 6510 oeiv 6511 nndi 6541 nnmsucr 6543 f1oen2g 6811 f1dom2g 6812 undiffi 6983 prarloclemarch2 7481 distrnq0 7521 ltprordil 7651 1idprl 7652 1idpru 7653 ltpopr 7657 ltexprlemopu 7665 ltexprlemdisj 7668 ltexprlemfl 7671 ltexprlemfu 7673 ltexprlemru 7674 recexprlemdisj 7692 recexprlemss1l 7697 recexprlemss1u 7698 cnegexlem1 8196 msqge0 8637 mulge0 8640 divnegap 8727 divdiv32ap 8741 divneg2ap 8757 peano2uz 9651 lbzbi 9684 negqmod0 10405 modqmuladdnn0 10442 expnlbnd 10738 shftfvalg 10965 xrmaxaddlem 11406 retanclap 11868 tannegap 11874 demoivreALT 11920 gcd0id 12119 isprm3 12259 euclemma 12287 phiprmpw 12363 fermltl 12375 sgrpcl 12995 mndcl 13007 grpcl 13083 dfgrp2 13102 grprcan 13112 grpsubcl 13155 imasgrp2 13183 mhmid 13188 mhmmnd 13189 mulginvcom 13220 mulgnndir 13224 mulgnnass 13230 qusgrp 13305 ghmmulg 13329 ghmrn 13330 ghmeqker 13344 ablcom 13376 ablinvadd 13383 ghmcmn 13400 rngacl 13441 rngpropd 13454 srgacl 13481 srgcom 13482 ringacl 13529 imasring 13563 subrngacl 13707 subrgacl 13731 subrgugrp 13739 lmodacl 13798 lmodmcl 13799 lmodvacl 13801 lmodvsubcl 13831 lmod4 13836 lmodvaddsub4 13838 lmodvpncan 13839 lmodvnpcan 13840 lmodsubeq0 13845 psmetcl 14505 xmetcl 14531 metcl 14532 meteq0 14539 metge0 14545 metsym 14550 blelrnps 14598 blelrn 14599 blssm 14600 blres 14613 mscl 14644 xmscl 14645 xmsge0 14646 xmseq0 14647 xmssym 14648 mopnin 14666 sincosq1sgn 15002 sincosq2sgn 15003 sincosq3sgn 15004 sincosq4sgn 15005 lgsneg1 15182 |
Copyright terms: Public domain | W3C validator |