| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an1 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an1.1 |
|
| syl3an1.2 |
|
| Ref | Expression |
|---|---|
| syl3an1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an1.1 |
. . 3
| |
| 2 | 1 | 3anim1i 1188 |
. 2
|
| 3 | syl3an1.2 |
. 2
| |
| 4 | 2, 3 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl3an1b 1286 syl3an1br 1289 wepo 4407 f1ofveu 5934 fovcdmda 6092 smoiso 6390 tfrcl 6452 omv 6543 oeiv 6544 nndi 6574 nnmsucr 6576 f1oen2g 6848 f1dom2g 6849 undiffi 7024 prarloclemarch2 7534 distrnq0 7574 ltprordil 7704 1idprl 7705 1idpru 7706 ltpopr 7710 ltexprlemopu 7718 ltexprlemdisj 7721 ltexprlemfl 7724 ltexprlemfu 7726 ltexprlemru 7727 recexprlemdisj 7745 recexprlemss1l 7750 recexprlemss1u 7751 cnegexlem1 8249 msqge0 8691 mulge0 8694 divnegap 8781 divdiv32ap 8795 divneg2ap 8811 peano2uz 9706 lbzbi 9739 negqmod0 10478 modqmuladdnn0 10515 expnlbnd 10811 fun2dmnop 10995 shftfvalg 11162 xrmaxaddlem 11604 retanclap 12066 tannegap 12072 demoivreALT 12118 gcd0id 12333 isprm3 12473 euclemma 12501 phiprmpw 12577 fermltl 12589 sgrpcl 13274 mndcl 13288 imasmnd2 13317 grpcl 13373 dfgrp2 13392 grprcan 13402 grpsubcl 13445 imasgrp2 13479 mhmid 13484 mhmmnd 13485 mulginvcom 13516 mulgnndir 13520 mulgnnass 13526 qusgrp 13601 ghmmulg 13625 ghmrn 13626 ghmeqker 13640 ablcom 13672 ablinvadd 13679 ghmcmn 13696 rngacl 13737 rngpropd 13750 srgacl 13777 srgcom 13778 ringacl 13825 imasring 13859 subrngacl 14003 subrgacl 14027 subrgugrp 14035 lmodacl 14094 lmodmcl 14095 lmodvacl 14097 lmodvsubcl 14127 lmod4 14132 lmodvaddsub4 14134 lmodvpncan 14135 lmodvnpcan 14136 lmodsubeq0 14141 psmetcl 14831 xmetcl 14857 metcl 14858 meteq0 14865 metge0 14871 metsym 14876 blelrnps 14924 blelrn 14925 blssm 14926 blres 14939 mscl 14970 xmscl 14971 xmsge0 14972 xmseq0 14973 xmssym 14974 mopnin 14992 sincosq1sgn 15331 sincosq2sgn 15332 sincosq3sgn 15333 sincosq4sgn 15334 lgsneg1 15535 |
| Copyright terms: Public domain | W3C validator |