![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3an1 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an1.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3an1.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl3an1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an1.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3anim1i 1185 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl3an1.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: syl3an1b 1274 syl3an1br 1277 wepo 4361 f1ofveu 5866 fovcdmda 6021 smoiso 6306 tfrcl 6368 omv 6459 oeiv 6460 nndi 6490 nnmsucr 6492 f1oen2g 6758 f1dom2g 6759 undiffi 6927 prarloclemarch2 7421 distrnq0 7461 ltprordil 7591 1idprl 7592 1idpru 7593 ltpopr 7597 ltexprlemopu 7605 ltexprlemdisj 7608 ltexprlemfl 7611 ltexprlemfu 7613 ltexprlemru 7614 recexprlemdisj 7632 recexprlemss1l 7637 recexprlemss1u 7638 cnegexlem1 8135 msqge0 8576 mulge0 8579 divnegap 8666 divdiv32ap 8680 divneg2ap 8696 peano2uz 9586 lbzbi 9619 negqmod0 10334 modqmuladdnn0 10371 expnlbnd 10648 shftfvalg 10830 xrmaxaddlem 11271 retanclap 11733 tannegap 11739 demoivreALT 11784 gcd0id 11983 isprm3 12121 euclemma 12149 phiprmpw 12225 fermltl 12237 mndcl 12832 grpcl 12893 dfgrp2 12910 grprcan 12918 grpsubcl 12961 imasgrp2 12989 mhmid 12992 mhmmnd 12993 mulginvcom 13022 mulgnndir 13026 mulgnnass 13032 ablcom 13121 ablinvadd 13128 rngacl 13168 srgacl 13203 srgcom 13204 ringacl 13251 subrgacl 13391 subrgugrp 13399 lmodacl 13427 lmodmcl 13428 lmodvacl 13430 lmodvsubcl 13460 lmod4 13465 lmodvaddsub4 13467 lmodvpncan 13468 lmodvnpcan 13469 lmodsubeq0 13474 psmetcl 14014 xmetcl 14040 metcl 14041 meteq0 14048 metge0 14054 metsym 14059 blelrnps 14107 blelrn 14108 blssm 14109 blres 14122 mscl 14153 xmscl 14154 xmsge0 14155 xmseq0 14156 xmssym 14157 mopnin 14175 sincosq1sgn 14435 sincosq2sgn 14436 sincosq3sgn 14437 sincosq4sgn 14438 lgsneg1 14614 |
Copyright terms: Public domain | W3C validator |