Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl3an1 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an1.1 | |
syl3an1.2 |
Ref | Expression |
---|---|
syl3an1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an1.1 | . . 3 | |
2 | 1 | 3anim1i 1168 | . 2 |
3 | syl3an1.2 | . 2 | |
4 | 2, 3 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: syl3an1b 1256 syl3an1br 1259 wepo 4322 f1ofveu 5815 fovrnda 5967 smoiso 6252 tfrcl 6314 omv 6405 oeiv 6406 nndi 6436 nnmsucr 6438 f1oen2g 6703 f1dom2g 6704 undiffi 6872 prarloclemarch2 7342 distrnq0 7382 ltprordil 7512 1idprl 7513 1idpru 7514 ltpopr 7518 ltexprlemopu 7526 ltexprlemdisj 7529 ltexprlemfl 7532 ltexprlemfu 7534 ltexprlemru 7535 recexprlemdisj 7553 recexprlemss1l 7558 recexprlemss1u 7559 cnegexlem1 8055 msqge0 8496 mulge0 8499 divnegap 8584 divdiv32ap 8598 divneg2ap 8614 peano2uz 9500 lbzbi 9532 negqmod0 10240 modqmuladdnn0 10277 expnlbnd 10552 shftfvalg 10730 xrmaxaddlem 11169 retanclap 11631 tannegap 11637 demoivreALT 11682 gcd0id 11879 isprm3 12011 euclemma 12037 phiprmpw 12113 fermltl 12125 psmetcl 12822 xmetcl 12848 metcl 12849 meteq0 12856 metge0 12862 metsym 12867 blelrnps 12915 blelrn 12916 blssm 12917 blres 12930 mscl 12961 xmscl 12962 xmsge0 12963 xmseq0 12964 xmssym 12965 mopnin 12983 sincosq1sgn 13243 sincosq2sgn 13244 sincosq3sgn 13245 sincosq4sgn 13246 |
Copyright terms: Public domain | W3C validator |