| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an1 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an1.1 |
|
| syl3an1.2 |
|
| Ref | Expression |
|---|---|
| syl3an1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an1.1 |
. . 3
| |
| 2 | 1 | 3anim1i 1188 |
. 2
|
| 3 | syl3an1.2 |
. 2
| |
| 4 | 2, 3 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl3an1b 1286 syl3an1br 1289 wepo 4406 f1ofveu 5932 fovcdmda 6090 smoiso 6388 tfrcl 6450 omv 6541 oeiv 6542 nndi 6572 nnmsucr 6574 f1oen2g 6846 f1dom2g 6847 undiffi 7022 prarloclemarch2 7532 distrnq0 7572 ltprordil 7702 1idprl 7703 1idpru 7704 ltpopr 7708 ltexprlemopu 7716 ltexprlemdisj 7719 ltexprlemfl 7722 ltexprlemfu 7724 ltexprlemru 7725 recexprlemdisj 7743 recexprlemss1l 7748 recexprlemss1u 7749 cnegexlem1 8247 msqge0 8689 mulge0 8692 divnegap 8779 divdiv32ap 8793 divneg2ap 8809 peano2uz 9704 lbzbi 9737 negqmod0 10476 modqmuladdnn0 10513 expnlbnd 10809 fun2dmnop 10993 shftfvalg 11129 xrmaxaddlem 11571 retanclap 12033 tannegap 12039 demoivreALT 12085 gcd0id 12300 isprm3 12440 euclemma 12468 phiprmpw 12544 fermltl 12556 sgrpcl 13241 mndcl 13255 imasmnd2 13284 grpcl 13340 dfgrp2 13359 grprcan 13369 grpsubcl 13412 imasgrp2 13446 mhmid 13451 mhmmnd 13452 mulginvcom 13483 mulgnndir 13487 mulgnnass 13493 qusgrp 13568 ghmmulg 13592 ghmrn 13593 ghmeqker 13607 ablcom 13639 ablinvadd 13646 ghmcmn 13663 rngacl 13704 rngpropd 13717 srgacl 13744 srgcom 13745 ringacl 13792 imasring 13826 subrngacl 13970 subrgacl 13994 subrgugrp 14002 lmodacl 14061 lmodmcl 14062 lmodvacl 14064 lmodvsubcl 14094 lmod4 14099 lmodvaddsub4 14101 lmodvpncan 14102 lmodvnpcan 14103 lmodsubeq0 14108 psmetcl 14798 xmetcl 14824 metcl 14825 meteq0 14832 metge0 14838 metsym 14843 blelrnps 14891 blelrn 14892 blssm 14893 blres 14906 mscl 14937 xmscl 14938 xmsge0 14939 xmseq0 14940 xmssym 14941 mopnin 14959 sincosq1sgn 15298 sincosq2sgn 15299 sincosq3sgn 15300 sincosq4sgn 15301 lgsneg1 15502 |
| Copyright terms: Public domain | W3C validator |