| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl3an1 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an1.1 |
|
| syl3an1.2 |
|
| Ref | Expression |
|---|---|
| syl3an1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an1.1 |
. . 3
| |
| 2 | 1 | 3anim1i 1188 |
. 2
|
| 3 | syl3an1.2 |
. 2
| |
| 4 | 2, 3 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syl3an1b 1286 syl3an1br 1289 wepo 4424 f1ofveu 5955 fovcdmda 6113 smoiso 6411 tfrcl 6473 omv 6564 oeiv 6565 nndi 6595 nnmsucr 6597 f1oen2g 6869 f1dom2g 6870 undiffi 7048 prarloclemarch2 7567 distrnq0 7607 ltprordil 7737 1idprl 7738 1idpru 7739 ltpopr 7743 ltexprlemopu 7751 ltexprlemdisj 7754 ltexprlemfl 7757 ltexprlemfu 7759 ltexprlemru 7760 recexprlemdisj 7778 recexprlemss1l 7783 recexprlemss1u 7784 cnegexlem1 8282 msqge0 8724 mulge0 8727 divnegap 8814 divdiv32ap 8828 divneg2ap 8844 peano2uz 9739 lbzbi 9772 negqmod0 10513 modqmuladdnn0 10550 expnlbnd 10846 fun2dmnop 11030 shftfvalg 11244 xrmaxaddlem 11686 retanclap 12148 tannegap 12154 demoivreALT 12200 gcd0id 12415 isprm3 12555 euclemma 12583 phiprmpw 12659 fermltl 12671 sgrpcl 13356 mndcl 13370 imasmnd2 13399 grpcl 13455 dfgrp2 13474 grprcan 13484 grpsubcl 13527 imasgrp2 13561 mhmid 13566 mhmmnd 13567 mulginvcom 13598 mulgnndir 13602 mulgnnass 13608 qusgrp 13683 ghmmulg 13707 ghmrn 13708 ghmeqker 13722 ablcom 13754 ablinvadd 13761 ghmcmn 13778 rngacl 13819 rngpropd 13832 srgacl 13859 srgcom 13860 ringacl 13907 imasring 13941 subrngacl 14085 subrgacl 14109 subrgugrp 14117 lmodacl 14176 lmodmcl 14177 lmodvacl 14179 lmodvsubcl 14209 lmod4 14214 lmodvaddsub4 14216 lmodvpncan 14217 lmodvnpcan 14218 lmodsubeq0 14223 psmetcl 14913 xmetcl 14939 metcl 14940 meteq0 14947 metge0 14953 metsym 14958 blelrnps 15006 blelrn 15007 blssm 15008 blres 15021 mscl 15052 xmscl 15053 xmsge0 15054 xmseq0 15055 xmssym 15056 mopnin 15074 sincosq1sgn 15413 sincosq2sgn 15414 sincosq3sgn 15415 sincosq4sgn 15416 lgsneg1 15617 |
| Copyright terms: Public domain | W3C validator |