Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl3an1 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an1.1 | |
syl3an1.2 |
Ref | Expression |
---|---|
syl3an1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an1.1 | . . 3 | |
2 | 1 | 3anim1i 1175 | . 2 |
3 | syl3an1.2 | . 2 | |
4 | 2, 3 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: syl3an1b 1264 syl3an1br 1267 wepo 4337 f1ofveu 5830 fovrnda 5985 smoiso 6270 tfrcl 6332 omv 6423 oeiv 6424 nndi 6454 nnmsucr 6456 f1oen2g 6721 f1dom2g 6722 undiffi 6890 prarloclemarch2 7360 distrnq0 7400 ltprordil 7530 1idprl 7531 1idpru 7532 ltpopr 7536 ltexprlemopu 7544 ltexprlemdisj 7547 ltexprlemfl 7550 ltexprlemfu 7552 ltexprlemru 7553 recexprlemdisj 7571 recexprlemss1l 7576 recexprlemss1u 7577 cnegexlem1 8073 msqge0 8514 mulge0 8517 divnegap 8602 divdiv32ap 8616 divneg2ap 8632 peano2uz 9521 lbzbi 9554 negqmod0 10266 modqmuladdnn0 10303 expnlbnd 10579 shftfvalg 10760 xrmaxaddlem 11201 retanclap 11663 tannegap 11669 demoivreALT 11714 gcd0id 11912 isprm3 12050 euclemma 12078 phiprmpw 12154 fermltl 12166 psmetcl 12966 xmetcl 12992 metcl 12993 meteq0 13000 metge0 13006 metsym 13011 blelrnps 13059 blelrn 13060 blssm 13061 blres 13074 mscl 13105 xmscl 13106 xmsge0 13107 xmseq0 13108 xmssym 13109 mopnin 13127 sincosq1sgn 13387 sincosq2sgn 13388 sincosq3sgn 13389 sincosq4sgn 13390 lgsneg1 13566 |
Copyright terms: Public domain | W3C validator |