![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimpri | Unicode version |
Description: Infer a converse implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 16-Sep-2013.) |
Ref | Expression |
---|---|
biimpri.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimpri |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpri.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 131 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | biimpi 119 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylibr 133 sylbir 134 sylbbr 135 sylbb1 136 sylbb2 137 mpbir 145 syl5bir 152 syl6ibr 161 bitri 183 sylanbr 281 sylan2br 284 simplbi2 380 sylanblrc 410 mtbi 642 pm3.44 687 orbi2i 734 pm2.31 740 dcor 900 rnlem 941 syl3an1br 1236 syl3an2br 1237 syl3an3br 1238 xorbin 1343 3impexpbicom 1395 equveli 1713 sbbii 1719 dveeq2or 1768 exmoeudc 2036 eueq2dc 2824 ralun 3222 undif3ss 3301 ssunieq 3733 a9evsep 4008 dcextest 4453 tfi 4454 peano5 4470 opelxpi 4529 ndmima 4872 iotass 5061 dffo2 5305 dff1o2 5326 resdif 5343 f1o00 5356 ressnop0 5553 fsnunfv 5573 ovid 5839 ovidig 5840 f1stres 6009 f2ndres 6010 rdgon 6235 elixpsn 6581 diffisn 6738 diffifi 6739 unsnfi 6758 snexxph 6788 ordiso2 6870 omp1eomlem 6929 ltexnqq 7158 enq0sym 7182 prarloclem5 7250 nqprloc 7295 nqprl 7301 nqpru 7302 pitonn 7577 axcnre 7610 peano5nnnn 7621 axcaucvglemres 7628 le2tri3i 7789 muldivdirap 8374 peano5nni 8627 0nn0 8890 uzind4 9279 elfz4 9686 eluzfz 9688 ssfzo12bi 9889 ioom 9925 ser0 10174 exp3vallem 10181 hashinfuni 10410 hashxp 10459 nn0abscl 10743 fimaxre2 10884 iserle 10997 climserle 11000 summodclem2a 11036 fsumcl2lem 11053 fsumadd 11061 sumsnf 11064 isumclim3 11078 isumadd 11086 sumsplitdc 11087 fsummulc2 11103 cvgcmpub 11131 isumshft 11145 isumlessdc 11151 trireciplem 11155 geolim 11166 geo2lim 11171 cvgratz 11187 mertenslem2 11191 mertensabs 11192 ef0lem 11211 efcvgfsum 11218 ege2le3 11222 efcj 11224 efgt1p2 11246 ndvdsadd 11470 gcdsupex 11488 gcdsupcl 11489 ialgrlemconst 11564 divgcdcoprmex 11623 1idssfct 11636 tgcl 12070 txcnp 12276 bj-sucexg 12803 bj-indind 12813 bj-2inf 12819 findset 12826 trilpolemisumle 12912 |
Copyright terms: Public domain | W3C validator |