![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl3anbr | Unicode version |
Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011.) |
Ref | Expression |
---|---|
syl3anbr.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3anbr.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3anbr.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3anbr.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl3anbr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anbr.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl3anbr.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | syl3anbr.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
7 | syl3anbr.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 2, 4, 6, 7 | syl3anb 1281 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |