| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syld3an3 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an3.1 |
|
| syld3an3.2 |
|
| Ref | Expression |
|---|---|
| syld3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 |
. 2
| |
| 2 | simp2 1000 |
. 2
| |
| 3 | syld3an3.1 |
. 2
| |
| 4 | syld3an3.2 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syld3an1 1295 syld3an2 1296 brelrng 4898 moriotass 5907 nnncan1 8265 lediv1 8899 modqval 10419 modqvalr 10420 modqcl 10421 flqpmodeq 10422 modq0 10424 modqge0 10427 modqlt 10428 modqdiffl 10430 modqdifz 10431 modqvalp1 10438 exp3val 10636 bcval4 10847 dvdsmultr1 11999 dvdssub2 12003 divalglemeuneg 12091 ndvdsadd 12099 grpsubf 13237 grpinvsub 13240 grpnpcan 13250 mulginvcom 13303 mulginvinv 13304 subgsubcl 13341 qussub 13393 ghmsub 13407 dvrcl 13717 unitdvcl 13718 basgen2 14343 opnneiss 14420 cnpf2 14469 sincosq1lem 15087 |
| Copyright terms: Public domain | W3C validator |