![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syld3an3 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
Ref | Expression |
---|---|
syld3an3.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syld3an3.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syld3an3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | simp2 1000 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syld3an3.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | syld3an3.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | syl3anc 1249 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: syld3an1 1295 syld3an2 1296 brelrng 4893 moriotass 5902 nnncan1 8255 lediv1 8888 modqval 10395 modqvalr 10396 modqcl 10397 flqpmodeq 10398 modq0 10400 modqge0 10403 modqlt 10404 modqdiffl 10406 modqdifz 10407 modqvalp1 10414 exp3val 10612 bcval4 10823 dvdsmultr1 11974 dvdssub2 11978 divalglemeuneg 12064 ndvdsadd 12072 grpsubf 13151 grpinvsub 13154 grpnpcan 13164 mulginvcom 13217 mulginvinv 13218 subgsubcl 13255 qussub 13307 ghmsub 13321 dvrcl 13631 unitdvcl 13632 basgen2 14249 opnneiss 14326 cnpf2 14375 sincosq1lem 14960 |
Copyright terms: Public domain | W3C validator |