| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syld3an3 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an3.1 |
|
| syld3an3.2 |
|
| Ref | Expression |
|---|---|
| syld3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 |
. 2
| |
| 2 | simp2 1000 |
. 2
| |
| 3 | syld3an3.1 |
. 2
| |
| 4 | syld3an3.2 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: syld3an1 1295 syld3an2 1296 brelrng 4898 moriotass 5909 nnncan1 8279 lediv1 8913 modqval 10433 modqvalr 10434 modqcl 10435 flqpmodeq 10436 modq0 10438 modqge0 10441 modqlt 10442 modqdiffl 10444 modqdifz 10445 modqvalp1 10452 exp3val 10650 bcval4 10861 dvdsmultr1 12013 dvdssub2 12017 divalglemeuneg 12105 ndvdsadd 12113 grpsubf 13281 grpinvsub 13284 grpnpcan 13294 mulginvcom 13353 mulginvinv 13354 subgsubcl 13391 qussub 13443 ghmsub 13457 dvrcl 13767 unitdvcl 13768 basgen2 14401 opnneiss 14478 cnpf2 14527 sincosq1lem 15145 |
| Copyright terms: Public domain | W3C validator |