| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syld3an3 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an3.1 |
|
| syld3an3.2 |
|
| Ref | Expression |
|---|---|
| syld3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. 2
| |
| 2 | simp2 1001 |
. 2
| |
| 3 | syld3an3.1 |
. 2
| |
| 4 | syld3an3.2 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syld3an1 1296 syld3an2 1297 brelrng 4928 moriotass 5951 nnncan1 8343 lediv1 8977 modqval 10506 modqvalr 10507 modqcl 10508 flqpmodeq 10509 modq0 10511 modqge0 10514 modqlt 10515 modqdiffl 10517 modqdifz 10518 modqvalp1 10525 exp3val 10723 bcval4 10934 ccatval3 11093 ccatfv0 11097 ccatval1lsw 11098 ccatval21sw 11099 lswccatn0lsw 11105 pfxsuff1eqwrdeq 11190 pfxccatid 11232 dvdsmultr1 12257 dvdssub2 12261 divalglemeuneg 12349 ndvdsadd 12357 grpsubf 13526 grpinvsub 13529 grpnpcan 13539 mulginvcom 13598 mulginvinv 13599 subgsubcl 13636 qussub 13688 ghmsub 13702 dvrcl 14012 unitdvcl 14013 basgen2 14668 opnneiss 14745 cnpf2 14794 sincosq1lem 15412 |
| Copyright terms: Public domain | W3C validator |