| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syld3an3 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an3.1 |
|
| syld3an3.2 |
|
| Ref | Expression |
|---|---|
| syld3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. 2
| |
| 2 | simp2 1001 |
. 2
| |
| 3 | syld3an3.1 |
. 2
| |
| 4 | syld3an3.2 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syld3an1 1296 syld3an2 1297 brelrng 4910 moriotass 5930 nnncan1 8310 lediv1 8944 modqval 10471 modqvalr 10472 modqcl 10473 flqpmodeq 10474 modq0 10476 modqge0 10479 modqlt 10480 modqdiffl 10482 modqdifz 10483 modqvalp1 10490 exp3val 10688 bcval4 10899 ccatval3 11058 ccatfv0 11062 ccatval1lsw 11063 ccatval21sw 11064 lswccatn0lsw 11070 pfxsuff1eqwrdeq 11153 dvdsmultr1 12175 dvdssub2 12179 divalglemeuneg 12267 ndvdsadd 12275 grpsubf 13444 grpinvsub 13447 grpnpcan 13457 mulginvcom 13516 mulginvinv 13517 subgsubcl 13554 qussub 13606 ghmsub 13620 dvrcl 13930 unitdvcl 13931 basgen2 14586 opnneiss 14663 cnpf2 14712 sincosq1lem 15330 |
| Copyright terms: Public domain | W3C validator |