| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syld3an3 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an3.1 |
|
| syld3an3.2 |
|
| Ref | Expression |
|---|---|
| syld3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. 2
| |
| 2 | simp2 1001 |
. 2
| |
| 3 | syld3an3.1 |
. 2
| |
| 4 | syld3an3.2 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: syld3an1 1296 syld3an2 1297 brelrng 4909 moriotass 5928 nnncan1 8308 lediv1 8942 modqval 10469 modqvalr 10470 modqcl 10471 flqpmodeq 10472 modq0 10474 modqge0 10477 modqlt 10478 modqdiffl 10480 modqdifz 10481 modqvalp1 10488 exp3val 10686 bcval4 10897 ccatval3 11055 ccatfv0 11059 ccatval1lsw 11060 ccatval21sw 11061 lswccatn0lsw 11067 dvdsmultr1 12142 dvdssub2 12146 divalglemeuneg 12234 ndvdsadd 12242 grpsubf 13411 grpinvsub 13414 grpnpcan 13424 mulginvcom 13483 mulginvinv 13484 subgsubcl 13521 qussub 13573 ghmsub 13587 dvrcl 13897 unitdvcl 13898 basgen2 14553 opnneiss 14630 cnpf2 14679 sincosq1lem 15297 |
| Copyright terms: Public domain | W3C validator |