| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syld3an3 | Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 20-May-2007.) |
| Ref | Expression |
|---|---|
| syld3an3.1 |
|
| syld3an3.2 |
|
| Ref | Expression |
|---|---|
| syld3an3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 |
. 2
| |
| 2 | simp2 1022 |
. 2
| |
| 3 | syld3an3.1 |
. 2
| |
| 4 | syld3an3.2 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1271 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: syld3an1 1317 syld3an2 1318 brelrng 4955 moriotass 5985 nnncan1 8382 lediv1 9016 modqval 10546 modqvalr 10547 modqcl 10548 flqpmodeq 10549 modq0 10551 modqge0 10554 modqlt 10555 modqdiffl 10557 modqdifz 10558 modqvalp1 10565 exp3val 10763 bcval4 10974 ccatval3 11134 ccatfv0 11138 ccatval1lsw 11139 ccatval21sw 11140 lswccatn0lsw 11146 pfxsuff1eqwrdeq 11231 pfxccatid 11273 dvdsmultr1 12342 dvdssub2 12346 divalglemeuneg 12434 ndvdsadd 12442 grpsubf 13612 grpinvsub 13615 grpnpcan 13625 mulginvcom 13684 mulginvinv 13685 subgsubcl 13722 qussub 13774 ghmsub 13788 dvrcl 14099 unitdvcl 14100 basgen2 14755 opnneiss 14832 cnpf2 14881 sincosq1lem 15499 |
| Copyright terms: Public domain | W3C validator |