ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syld3an3 Unicode version

Theorem syld3an3 1294
Description: A syllogism inference. (Contributed by NM, 20-May-2007.)
Hypotheses
Ref Expression
syld3an3.1  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
syld3an3.2  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
Assertion
Ref Expression
syld3an3  |-  ( (
ph  /\  ps  /\  ch )  ->  ta )

Proof of Theorem syld3an3
StepHypRef Expression
1 simp1 999 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  ph )
2 simp2 1000 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  ps )
3 syld3an3.1 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  th )
4 syld3an3.2 . 2  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
51, 2, 3, 4syl3anc 1249 1  |-  ( (
ph  /\  ps  /\  ch )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  syld3an1  1295  syld3an2  1296  brelrng  4898  moriotass  5907  nnncan1  8265  lediv1  8899  modqval  10419  modqvalr  10420  modqcl  10421  flqpmodeq  10422  modq0  10424  modqge0  10427  modqlt  10428  modqdiffl  10430  modqdifz  10431  modqvalp1  10438  exp3val  10636  bcval4  10847  dvdsmultr1  11999  dvdssub2  12003  divalglemeuneg  12091  ndvdsadd  12099  grpsubf  13237  grpinvsub  13240  grpnpcan  13250  mulginvcom  13303  mulginvinv  13304  subgsubcl  13341  qussub  13393  ghmsub  13407  dvrcl  13717  unitdvcl  13718  basgen2  14343  opnneiss  14420  cnpf2  14469  sincosq1lem  15087
  Copyright terms: Public domain W3C validator