ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylancb Unicode version

Theorem sylancb 415
Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.)
Hypotheses
Ref Expression
sylancb.1  |-  ( ph  <->  ps )
sylancb.2  |-  ( ph  <->  ch )
sylancb.3  |-  ( ( ps  /\  ch )  ->  th )
Assertion
Ref Expression
sylancb  |-  ( ph  ->  th )

Proof of Theorem sylancb
StepHypRef Expression
1 sylancb.1 . . 3  |-  ( ph  <->  ps )
2 sylancb.2 . . 3  |-  ( ph  <->  ch )
3 sylancb.3 . . 3  |-  ( ( ps  /\  ch )  ->  th )
41, 2, 3syl2anb 289 . 2  |-  ( (
ph  /\  ph )  ->  th )
54anidms 395 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator