| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidms | Unicode version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 |
|
| Ref | Expression |
|---|---|
| anidms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3919 pwnss 4203 posng 4747 sqxpexg 4791 xpid11 4901 resiexg 5004 f1mpt 5840 f1eqcocnv 5860 isopolem 5891 poxp 6318 nnmsucr 6574 erex 6644 ecopover 6720 ecopoverg 6723 enrefg 6855 3xpfi 7030 tapeq2 7365 netap 7366 2omotaplemap 7369 ltsopi 7433 recexnq 7503 ltsonq 7511 ltaddnq 7520 nsmallnqq 7525 ltpopr 7708 ltposr 7876 1idsr 7881 00sr 7882 axltirr 8139 leid 8156 reapirr 8650 inelr 8657 apsqgt0 8674 apirr 8678 msqge0 8689 recextlem1 8724 recexaplem2 8725 recexap 8726 div1 8776 cju 9034 2halves 9266 msqznn 9473 xrltnr 9901 xrleid 9922 iooidg 10031 iccid 10047 m1expeven 10731 expubnd 10741 sqneg 10743 sqcl 10745 sqap0 10751 nnsqcl 10754 qsqcl 10756 subsq2 10792 bernneq 10805 faclbnd 10886 faclbnd3 10888 cjmulval 11199 sin2t 12060 cos2t 12061 gcd0id 12300 lcmid 12402 lcmgcdeq 12405 intopsn 13199 mgm1 13202 sgrp1 13243 mnd1 13287 mnd1id 13288 grpsubid 13416 grp1 13438 grp1inv 13439 ringadd2 13789 ring1 13821 idcn 14684 ismet 14816 isxmet 14817 resubmet 15028 bj-snexg 15848 |
| Copyright terms: Public domain | W3C validator |