![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anidms | Unicode version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anidms |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm2.43i 49 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3879 pwnss 4160 posng 4699 sqxpexg 4743 xpid11 4851 resiexg 4953 f1mpt 5772 f1eqcocnv 5792 isopolem 5823 poxp 6233 nnmsucr 6489 erex 6559 ecopover 6633 ecopoverg 6636 enrefg 6764 3xpfi 6930 tapeq2 7252 netap 7253 2omotaplemap 7256 ltsopi 7319 recexnq 7389 ltsonq 7397 ltaddnq 7406 nsmallnqq 7411 ltpopr 7594 ltposr 7762 1idsr 7767 00sr 7768 axltirr 8024 leid 8041 reapirr 8534 inelr 8541 apsqgt0 8558 apirr 8562 msqge0 8573 recextlem1 8608 recexaplem2 8609 recexap 8610 div1 8660 cju 8918 2halves 9148 msqznn 9353 xrltnr 9779 xrleid 9800 iooidg 9909 iccid 9925 m1expeven 10567 expubnd 10577 sqneg 10579 sqcl 10581 sqap0 10587 nnsqcl 10590 qsqcl 10592 subsq2 10628 bernneq 10641 faclbnd 10721 faclbnd3 10723 cjmulval 10897 sin2t 11757 cos2t 11758 gcd0id 11980 lcmid 12080 lcmgcdeq 12083 intopsn 12786 mgm1 12789 sgrp1 12816 mnd1 12847 mnd1id 12848 grpsubid 12954 grp1 12976 grp1inv 12977 ringadd2 13210 ring1 13236 idcn 13715 ismet 13847 isxmet 13848 resubmet 14051 bj-snexg 14667 |
Copyright terms: Public domain | W3C validator |