| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidms | Unicode version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 |
|
| Ref | Expression |
|---|---|
| anidms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3909 pwnss 4193 posng 4736 sqxpexg 4780 xpid11 4890 resiexg 4992 f1mpt 5819 f1eqcocnv 5839 isopolem 5870 poxp 6291 nnmsucr 6547 erex 6617 ecopover 6693 ecopoverg 6696 enrefg 6824 3xpfi 6995 tapeq2 7322 netap 7323 2omotaplemap 7326 ltsopi 7389 recexnq 7459 ltsonq 7467 ltaddnq 7476 nsmallnqq 7481 ltpopr 7664 ltposr 7832 1idsr 7837 00sr 7838 axltirr 8095 leid 8112 reapirr 8606 inelr 8613 apsqgt0 8630 apirr 8634 msqge0 8645 recextlem1 8680 recexaplem2 8681 recexap 8682 div1 8732 cju 8990 2halves 9222 msqznn 9428 xrltnr 9856 xrleid 9877 iooidg 9986 iccid 10002 m1expeven 10680 expubnd 10690 sqneg 10692 sqcl 10694 sqap0 10700 nnsqcl 10703 qsqcl 10705 subsq2 10741 bernneq 10754 faclbnd 10835 faclbnd3 10837 cjmulval 11055 sin2t 11916 cos2t 11917 gcd0id 12156 lcmid 12258 lcmgcdeq 12261 intopsn 13020 mgm1 13023 sgrp1 13064 mnd1 13097 mnd1id 13098 grpsubid 13226 grp1 13248 grp1inv 13249 ringadd2 13593 ring1 13625 idcn 14458 ismet 14590 isxmet 14591 resubmet 14802 bj-snexg 15568 |
| Copyright terms: Public domain | W3C validator |