| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidms | Unicode version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 |
|
| Ref | Expression |
|---|---|
| anidms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3933 pwnss 4219 posng 4765 sqxpexg 4809 xpid11 4920 resiexg 5023 f1mpt 5863 f1eqcocnv 5883 isopolem 5914 poxp 6341 nnmsucr 6597 erex 6667 ecopover 6743 ecopoverg 6746 enrefg 6878 3xpfi 7056 tapeq2 7400 netap 7401 2omotaplemap 7404 ltsopi 7468 recexnq 7538 ltsonq 7546 ltaddnq 7555 nsmallnqq 7560 ltpopr 7743 ltposr 7911 1idsr 7916 00sr 7917 axltirr 8174 leid 8191 reapirr 8685 inelr 8692 apsqgt0 8709 apirr 8713 msqge0 8724 recextlem1 8759 recexaplem2 8760 recexap 8761 div1 8811 cju 9069 2halves 9301 msqznn 9508 xrltnr 9936 xrleid 9957 iooidg 10066 iccid 10082 m1expeven 10768 expubnd 10778 sqneg 10780 sqcl 10782 sqap0 10788 nnsqcl 10791 qsqcl 10793 subsq2 10829 bernneq 10842 faclbnd 10923 faclbnd3 10925 cjmulval 11314 sin2t 12175 cos2t 12176 gcd0id 12415 lcmid 12517 lcmgcdeq 12520 intopsn 13314 mgm1 13317 sgrp1 13358 mnd1 13402 mnd1id 13403 grpsubid 13531 grp1 13553 grp1inv 13554 ringadd2 13904 ring1 13936 idcn 14799 ismet 14931 isxmet 14932 resubmet 15143 bj-snexg 16047 |
| Copyright terms: Public domain | W3C validator |