![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anidms | Unicode version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anidms |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm2.43i 49 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3905 pwnss 4189 posng 4732 sqxpexg 4776 xpid11 4886 resiexg 4988 f1mpt 5815 f1eqcocnv 5835 isopolem 5866 poxp 6287 nnmsucr 6543 erex 6613 ecopover 6689 ecopoverg 6692 enrefg 6820 3xpfi 6989 tapeq2 7315 netap 7316 2omotaplemap 7319 ltsopi 7382 recexnq 7452 ltsonq 7460 ltaddnq 7469 nsmallnqq 7474 ltpopr 7657 ltposr 7825 1idsr 7830 00sr 7831 axltirr 8088 leid 8105 reapirr 8598 inelr 8605 apsqgt0 8622 apirr 8626 msqge0 8637 recextlem1 8672 recexaplem2 8673 recexap 8674 div1 8724 cju 8982 2halves 9214 msqznn 9420 xrltnr 9848 xrleid 9869 iooidg 9978 iccid 9994 m1expeven 10660 expubnd 10670 sqneg 10672 sqcl 10674 sqap0 10680 nnsqcl 10683 qsqcl 10685 subsq2 10721 bernneq 10734 faclbnd 10815 faclbnd3 10817 cjmulval 11035 sin2t 11895 cos2t 11896 gcd0id 12119 lcmid 12221 lcmgcdeq 12224 intopsn 12953 mgm1 12956 sgrp1 12997 mnd1 13030 mnd1id 13031 grpsubid 13159 grp1 13181 grp1inv 13182 ringadd2 13526 ring1 13558 idcn 14391 ismet 14523 isxmet 14524 resubmet 14735 bj-snexg 15474 |
Copyright terms: Public domain | W3C validator |