| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidms | Unicode version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 |
|
| Ref | Expression |
|---|---|
| anidms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3919 pwnss 4204 posng 4748 sqxpexg 4792 xpid11 4902 resiexg 5005 f1mpt 5842 f1eqcocnv 5862 isopolem 5893 poxp 6320 nnmsucr 6576 erex 6646 ecopover 6722 ecopoverg 6725 enrefg 6857 3xpfi 7032 tapeq2 7367 netap 7368 2omotaplemap 7371 ltsopi 7435 recexnq 7505 ltsonq 7513 ltaddnq 7522 nsmallnqq 7527 ltpopr 7710 ltposr 7878 1idsr 7883 00sr 7884 axltirr 8141 leid 8158 reapirr 8652 inelr 8659 apsqgt0 8676 apirr 8680 msqge0 8691 recextlem1 8726 recexaplem2 8727 recexap 8728 div1 8778 cju 9036 2halves 9268 msqznn 9475 xrltnr 9903 xrleid 9924 iooidg 10033 iccid 10049 m1expeven 10733 expubnd 10743 sqneg 10745 sqcl 10747 sqap0 10753 nnsqcl 10756 qsqcl 10758 subsq2 10794 bernneq 10807 faclbnd 10888 faclbnd3 10890 cjmulval 11232 sin2t 12093 cos2t 12094 gcd0id 12333 lcmid 12435 lcmgcdeq 12438 intopsn 13232 mgm1 13235 sgrp1 13276 mnd1 13320 mnd1id 13321 grpsubid 13449 grp1 13471 grp1inv 13472 ringadd2 13822 ring1 13854 idcn 14717 ismet 14849 isxmet 14850 resubmet 15061 bj-snexg 15885 |
| Copyright terms: Public domain | W3C validator |