Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anidms | Unicode version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 |
Ref | Expression |
---|---|
anidms |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 | . . 3 | |
2 | 1 | ex 114 | . 2 |
3 | 2 | pm2.43i 49 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: sylancb 415 sylancbr 416 intsng 3841 pwnss 4119 posng 4655 sqxpexg 4699 xpid11 4806 resiexg 4908 f1mpt 5716 f1eqcocnv 5736 isopolem 5767 poxp 6173 nnmsucr 6428 erex 6497 ecopover 6571 ecopoverg 6574 enrefg 6702 3xpfi 6868 ltsopi 7223 recexnq 7293 ltsonq 7301 ltaddnq 7310 nsmallnqq 7315 ltpopr 7498 ltposr 7666 1idsr 7671 00sr 7672 axltirr 7927 leid 7944 reapirr 8435 inelr 8442 apsqgt0 8459 apirr 8463 msqge0 8474 recextlem1 8508 recexaplem2 8509 recexap 8510 div1 8559 cju 8815 2halves 9045 msqznn 9247 xrltnr 9668 xrleid 9689 iooidg 9795 iccid 9811 m1expeven 10448 expubnd 10458 sqneg 10460 sqcl 10462 sqap0 10467 nnsqcl 10470 qsqcl 10472 subsq2 10508 bernneq 10520 faclbnd 10597 faclbnd3 10599 cjmulval 10770 sin2t 11628 cos2t 11629 gcd0id 11843 lcmid 11937 lcmgcdeq 11940 idcn 12572 ismet 12704 isxmet 12705 resubmet 12908 bj-snexg 13447 |
Copyright terms: Public domain | W3C validator |