| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > anidms | Unicode version | ||
| Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
| Ref | Expression |
|---|---|
| anidms.1 |
|
| Ref | Expression |
|---|---|
| anidms |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anidms.1 |
. . 3
| |
| 2 | 1 | ex 115 |
. 2
|
| 3 | 2 | pm2.43i 49 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3957 pwnss 4243 posng 4791 sqxpexg 4835 xpid11 4947 resiexg 5050 f1mpt 5895 f1eqcocnv 5915 isopolem 5946 poxp 6378 nnmsucr 6634 erex 6704 ecopover 6780 ecopoverg 6783 enrefg 6915 3xpfi 7095 tapeq2 7439 netap 7440 2omotaplemap 7443 ltsopi 7507 recexnq 7577 ltsonq 7585 ltaddnq 7594 nsmallnqq 7599 ltpopr 7782 ltposr 7950 1idsr 7955 00sr 7956 axltirr 8213 leid 8230 reapirr 8724 inelr 8731 apsqgt0 8748 apirr 8752 msqge0 8763 recextlem1 8798 recexaplem2 8799 recexap 8800 div1 8850 cju 9108 2halves 9340 msqznn 9547 xrltnr 9975 xrleid 9996 iooidg 10105 iccid 10121 m1expeven 10808 expubnd 10818 sqneg 10820 sqcl 10822 sqap0 10828 nnsqcl 10831 qsqcl 10833 subsq2 10869 bernneq 10882 faclbnd 10963 faclbnd3 10965 cjmulval 11399 sin2t 12260 cos2t 12261 gcd0id 12500 lcmid 12602 lcmgcdeq 12605 intopsn 13400 mgm1 13403 sgrp1 13444 mnd1 13488 mnd1id 13489 grpsubid 13617 grp1 13639 grp1inv 13640 ringadd2 13990 ring1 14022 idcn 14886 ismet 15018 isxmet 15019 resubmet 15230 bj-snexg 16275 |
| Copyright terms: Public domain | W3C validator |