![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > anidms | Unicode version |
Description: Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.) |
Ref | Expression |
---|---|
anidms.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
anidms |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidms.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | pm2.43i 49 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: sylancb 418 sylancbr 419 intsng 3878 pwnss 4159 posng 4698 sqxpexg 4742 xpid11 4850 resiexg 4952 f1mpt 5771 f1eqcocnv 5791 isopolem 5822 poxp 6232 nnmsucr 6488 erex 6558 ecopover 6632 ecopoverg 6635 enrefg 6763 3xpfi 6929 tapeq2 7251 netap 7252 2omotaplemap 7255 ltsopi 7318 recexnq 7388 ltsonq 7396 ltaddnq 7405 nsmallnqq 7410 ltpopr 7593 ltposr 7761 1idsr 7766 00sr 7767 axltirr 8023 leid 8040 reapirr 8533 inelr 8540 apsqgt0 8557 apirr 8561 msqge0 8572 recextlem1 8607 recexaplem2 8608 recexap 8609 div1 8659 cju 8917 2halves 9147 msqznn 9352 xrltnr 9778 xrleid 9799 iooidg 9908 iccid 9924 m1expeven 10566 expubnd 10576 sqneg 10578 sqcl 10580 sqap0 10586 nnsqcl 10589 qsqcl 10591 subsq2 10627 bernneq 10640 faclbnd 10720 faclbnd3 10722 cjmulval 10896 sin2t 11756 cos2t 11757 gcd0id 11979 lcmid 12079 lcmgcdeq 12082 intopsn 12785 mgm1 12788 sgrp1 12815 mnd1 12846 mnd1id 12847 grpsubid 12953 grp1 12975 grp1inv 12976 ringadd2 13208 ring1 13234 idcn 13682 ismet 13814 isxmet 13815 resubmet 14018 bj-snexg 14634 |
Copyright terms: Public domain | W3C validator |