Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl2anb | Unicode version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anb.1 | |
syl2anb.2 | |
syl2anb.3 |
Ref | Expression |
---|---|
syl2anb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.2 | . 2 | |
2 | syl2anb.1 | . . 3 | |
3 | syl2anb.3 | . . 3 | |
4 | 2, 3 | sylanb 282 | . 2 |
5 | 1, 4 | sylan2b 285 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylancb 415 stdcndc 835 reupick3 3407 difprsnss 3711 trin2 4995 imadiflem 5267 fnun 5294 fco 5353 f1co 5405 foco 5420 f1oun 5452 f1oco 5455 eqfunfv 5588 ftpg 5669 issmo 6256 tfrlem5 6282 ener 6745 domtr 6751 unen 6782 xpdom2 6797 mapen 6812 pm54.43 7146 axpre-lttrn 7825 axpre-mulgt0 7828 zmulcl 9244 qaddcl 9573 qmulcl 9575 rpaddcl 9613 rpmulcl 9614 rpdivcl 9615 xrltnsym 9729 xrlttri3 9733 ge0addcl 9917 ge0mulcl 9918 ge0xaddcl 9919 expclzaplem 10479 expge0 10491 expge1 10492 hashfacen 10749 qredeu 12029 nn0gcdsq 12132 mul4sq 12324 cnovex 12836 iscn2 12840 txuni 12903 txcn 12915 lgsne0 13579 mul2sq 13592 |
Copyright terms: Public domain | W3C validator |