| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2anb | Unicode version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 |
|
| syl2anb.2 |
|
| syl2anb.3 |
|
| Ref | Expression |
|---|---|
| syl2anb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 |
. 2
| |
| 2 | syl2anb.1 |
. . 3
| |
| 3 | syl2anb.3 |
. . 3
| |
| 4 | 2, 3 | sylanb 284 |
. 2
|
| 5 | 1, 4 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylancb 418 stdcndc 847 reupick3 3462 difprsnss 3777 trin2 5083 fundif 5327 imadiflem 5362 fnun 5391 fco 5451 f1co 5505 foco 5521 f1oun 5554 f1oco 5557 eqfunfv 5695 ftpg 5781 issmo 6387 tfrlem5 6413 ener 6884 domtr 6890 unen 6922 xpdom2 6941 mapen 6958 pm54.43 7313 axpre-lttrn 8017 axpre-mulgt0 8020 zmulcl 9446 qaddcl 9776 qmulcl 9778 rpaddcl 9819 rpmulcl 9820 rpdivcl 9821 xrltnsym 9935 xrlttri3 9939 ge0addcl 10123 ge0mulcl 10124 ge0xaddcl 10125 expclzaplem 10730 expge0 10742 expge1 10743 hashfacen 11003 qredeu 12494 nn0gcdsq 12597 mul4sq 12792 cnovex 14743 iscn2 14747 txuni 14810 txcn 14822 lgsne0 15590 mul2sq 15668 |
| Copyright terms: Public domain | W3C validator |