| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > syl2anb | Unicode version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) | 
| Ref | Expression | 
|---|---|
| syl2anb.1 | 
 | 
| syl2anb.2 | 
 | 
| syl2anb.3 | 
 | 
| Ref | Expression | 
|---|---|
| syl2anb | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl2anb.2 | 
. 2
 | |
| 2 | syl2anb.1 | 
. . 3
 | |
| 3 | syl2anb.3 | 
. . 3
 | |
| 4 | 2, 3 | sylanb 284 | 
. 2
 | 
| 5 | 1, 4 | sylan2b 287 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: sylancb 418 stdcndc 846 reupick3 3448 difprsnss 3760 trin2 5061 imadiflem 5337 fnun 5364 fco 5423 f1co 5475 foco 5491 f1oun 5524 f1oco 5527 eqfunfv 5664 ftpg 5746 issmo 6346 tfrlem5 6372 ener 6838 domtr 6844 unen 6875 xpdom2 6890 mapen 6907 pm54.43 7257 axpre-lttrn 7951 axpre-mulgt0 7954 zmulcl 9379 qaddcl 9709 qmulcl 9711 rpaddcl 9752 rpmulcl 9753 rpdivcl 9754 xrltnsym 9868 xrlttri3 9872 ge0addcl 10056 ge0mulcl 10057 ge0xaddcl 10058 expclzaplem 10655 expge0 10667 expge1 10668 hashfacen 10928 qredeu 12265 nn0gcdsq 12368 mul4sq 12563 cnovex 14432 iscn2 14436 txuni 14499 txcn 14511 lgsne0 15279 mul2sq 15357 | 
| Copyright terms: Public domain | W3C validator |