| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2anb | Unicode version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 |
|
| syl2anb.2 |
|
| syl2anb.3 |
|
| Ref | Expression |
|---|---|
| syl2anb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 |
. 2
| |
| 2 | syl2anb.1 |
. . 3
| |
| 3 | syl2anb.3 |
. . 3
| |
| 4 | 2, 3 | sylanb 284 |
. 2
|
| 5 | 1, 4 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylancb 418 stdcndc 846 reupick3 3457 difprsnss 3770 trin2 5071 imadiflem 5347 fnun 5376 fco 5435 f1co 5487 foco 5503 f1oun 5536 f1oco 5539 eqfunfv 5676 ftpg 5758 issmo 6364 tfrlem5 6390 ener 6856 domtr 6862 unen 6893 xpdom2 6908 mapen 6925 pm54.43 7280 axpre-lttrn 7979 axpre-mulgt0 7982 zmulcl 9408 qaddcl 9738 qmulcl 9740 rpaddcl 9781 rpmulcl 9782 rpdivcl 9783 xrltnsym 9897 xrlttri3 9901 ge0addcl 10085 ge0mulcl 10086 ge0xaddcl 10087 expclzaplem 10689 expge0 10701 expge1 10702 hashfacen 10962 qredeu 12338 nn0gcdsq 12441 mul4sq 12636 cnovex 14586 iscn2 14590 txuni 14653 txcn 14665 lgsne0 15433 mul2sq 15511 |
| Copyright terms: Public domain | W3C validator |