Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl2anb | Unicode version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anb.1 | |
syl2anb.2 | |
syl2anb.3 |
Ref | Expression |
---|---|
syl2anb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.2 | . 2 | |
2 | syl2anb.1 | . . 3 | |
3 | syl2anb.3 | . . 3 | |
4 | 2, 3 | sylanb 282 | . 2 |
5 | 1, 4 | sylan2b 285 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sylancb 415 stdcndc 831 reupick3 3392 difprsnss 3695 trin2 4978 imadiflem 5250 fnun 5277 fco 5336 f1co 5388 foco 5403 f1oun 5435 f1oco 5438 eqfunfv 5571 ftpg 5652 issmo 6236 tfrlem5 6262 ener 6725 domtr 6731 unen 6762 xpdom2 6777 mapen 6792 pm54.43 7126 axpre-lttrn 7805 axpre-mulgt0 7808 zmulcl 9221 qaddcl 9545 qmulcl 9547 rpaddcl 9585 rpmulcl 9586 rpdivcl 9587 xrltnsym 9701 xrlttri3 9705 ge0addcl 9886 ge0mulcl 9887 ge0xaddcl 9888 expclzaplem 10447 expge0 10459 expge1 10460 hashfacen 10711 qredeu 11978 nn0gcdsq 12079 cnovex 12638 iscn2 12642 txuni 12705 txcn 12717 |
Copyright terms: Public domain | W3C validator |