![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl2anb | Unicode version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anb.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2anb.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2anb.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl2anb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl2anb.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl2anb.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylanb 284 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | sylan2b 287 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sylancb 418 stdcndc 846 reupick3 3445 difprsnss 3757 trin2 5058 imadiflem 5334 fnun 5361 fco 5420 f1co 5472 foco 5488 f1oun 5521 f1oco 5524 eqfunfv 5661 ftpg 5743 issmo 6343 tfrlem5 6369 ener 6835 domtr 6841 unen 6872 xpdom2 6887 mapen 6904 pm54.43 7252 axpre-lttrn 7946 axpre-mulgt0 7949 zmulcl 9373 qaddcl 9703 qmulcl 9705 rpaddcl 9746 rpmulcl 9747 rpdivcl 9748 xrltnsym 9862 xrlttri3 9866 ge0addcl 10050 ge0mulcl 10051 ge0xaddcl 10052 expclzaplem 10637 expge0 10649 expge1 10650 hashfacen 10910 qredeu 12238 nn0gcdsq 12341 mul4sq 12535 cnovex 14375 iscn2 14379 txuni 14442 txcn 14454 lgsne0 15195 mul2sq 15273 |
Copyright terms: Public domain | W3C validator |