| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2anb | Unicode version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 |
|
| syl2anb.2 |
|
| syl2anb.3 |
|
| Ref | Expression |
|---|---|
| syl2anb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 |
. 2
| |
| 2 | syl2anb.1 |
. . 3
| |
| 3 | syl2anb.3 |
. . 3
| |
| 4 | 2, 3 | sylanb 284 |
. 2
|
| 5 | 1, 4 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylancb 418 stdcndc 846 reupick3 3457 difprsnss 3770 trin2 5073 fundif 5317 imadiflem 5352 fnun 5381 fco 5440 f1co 5492 foco 5508 f1oun 5541 f1oco 5544 eqfunfv 5681 ftpg 5767 issmo 6373 tfrlem5 6399 ener 6870 domtr 6876 unen 6907 xpdom2 6925 mapen 6942 pm54.43 7297 axpre-lttrn 7996 axpre-mulgt0 7999 zmulcl 9425 qaddcl 9755 qmulcl 9757 rpaddcl 9798 rpmulcl 9799 rpdivcl 9800 xrltnsym 9914 xrlttri3 9918 ge0addcl 10102 ge0mulcl 10103 ge0xaddcl 10104 expclzaplem 10706 expge0 10718 expge1 10719 hashfacen 10979 qredeu 12361 nn0gcdsq 12464 mul4sq 12659 cnovex 14610 iscn2 14614 txuni 14677 txcn 14689 lgsne0 15457 mul2sq 15535 |
| Copyright terms: Public domain | W3C validator |