| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > syl2anb | Unicode version | ||
| Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
| Ref | Expression |
|---|---|
| syl2anb.1 |
|
| syl2anb.2 |
|
| syl2anb.3 |
|
| Ref | Expression |
|---|---|
| syl2anb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2anb.2 |
. 2
| |
| 2 | syl2anb.1 |
. . 3
| |
| 3 | syl2anb.3 |
. . 3
| |
| 4 | 2, 3 | sylanb 284 |
. 2
|
| 5 | 1, 4 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylancb 418 stdcndc 850 reupick3 3489 difprsnss 3805 trin2 5119 fundif 5364 imadiflem 5399 fnun 5428 fco 5488 f1co 5542 foco 5558 f1oun 5591 f1oco 5594 eqfunfv 5736 ftpg 5822 issmo 6432 tfrlem5 6458 ener 6929 domtr 6935 unen 6967 xpdom2 6986 mapen 7003 pm54.43 7359 axpre-lttrn 8067 axpre-mulgt0 8070 zmulcl 9496 qaddcl 9826 qmulcl 9828 rpaddcl 9869 rpmulcl 9870 rpdivcl 9871 xrltnsym 9985 xrlttri3 9989 ge0addcl 10173 ge0mulcl 10174 ge0xaddcl 10175 expclzaplem 10780 expge0 10792 expge1 10793 hashfacen 11053 qredeu 12614 nn0gcdsq 12717 mul4sq 12912 cnovex 14864 iscn2 14868 txuni 14931 txcn 14943 lgsne0 15711 mul2sq 15789 |
| Copyright terms: Public domain | W3C validator |