![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl2anb | Unicode version |
Description: A double syllogism inference. (Contributed by NM, 29-Jul-1999.) |
Ref | Expression |
---|---|
syl2anb.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2anb.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl2anb.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl2anb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anb.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl2anb.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl2anb.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylanb 284 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | sylan2b 287 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sylancb 418 stdcndc 846 reupick3 3444 difprsnss 3756 trin2 5057 imadiflem 5333 fnun 5360 fco 5419 f1co 5471 foco 5487 f1oun 5520 f1oco 5523 eqfunfv 5660 ftpg 5742 issmo 6341 tfrlem5 6367 ener 6833 domtr 6839 unen 6870 xpdom2 6885 mapen 6902 pm54.43 7250 axpre-lttrn 7944 axpre-mulgt0 7947 zmulcl 9370 qaddcl 9700 qmulcl 9702 rpaddcl 9743 rpmulcl 9744 rpdivcl 9745 xrltnsym 9859 xrlttri3 9863 ge0addcl 10047 ge0mulcl 10048 ge0xaddcl 10049 expclzaplem 10634 expge0 10646 expge1 10647 hashfacen 10907 qredeu 12235 nn0gcdsq 12338 mul4sq 12532 cnovex 14364 iscn2 14368 txuni 14431 txcn 14443 lgsne0 15154 mul2sq 15203 |
Copyright terms: Public domain | W3C validator |