ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trubitru Unicode version

Theorem trubitru 1405
Description: A  <-> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
trubitru  |-  ( ( T.  <-> T.  )  <-> T.  )

Proof of Theorem trubitru
StepHypRef Expression
1 biid 170 . 2  |-  ( T.  <-> T.  )
21bitru 1355 1  |-  ( ( T.  <-> T.  )  <-> T.  )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   T. wtru 1344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-tru 1346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator