ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notfal Unicode version

Theorem notfal 1409
Description: A  -. identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
notfal  |-  ( -. F.  <-> T.  )

Proof of Theorem notfal
StepHypRef Expression
1 fal 1355 . 2  |-  -. F.
21bitru 1360 1  |-  ( -. F.  <-> T.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104   T. wtru 1349   F. wfal 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  truxorfal  1415  falxortru  1416  falxorfal  1417
  Copyright terms: Public domain W3C validator