ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xchnxbi Unicode version

Theorem xchnxbi 675
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchnxbi.1  |-  ( -. 
ph 
<->  ps )
xchnxbi.2  |-  ( ph  <->  ch )
Assertion
Ref Expression
xchnxbi  |-  ( -. 
ch 
<->  ps )

Proof of Theorem xchnxbi
StepHypRef Expression
1 xchnxbi.2 . . 3  |-  ( ph  <->  ch )
21notbii 663 . 2  |-  ( -. 
ph 
<->  -.  ch )
3 xchnxbi.1 . 2  |-  ( -. 
ph 
<->  ps )
42, 3bitr3i 185 1  |-  ( -. 
ch 
<->  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  xchnxbir  676
  Copyright terms: Public domain W3C validator