Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xchnxbir | Unicode version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbir.1 | |
xchnxbir.2 |
Ref | Expression |
---|---|
xchnxbir |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbir.1 | . 2 | |
2 | xchnxbir.2 | . . 3 | |
3 | 2 | bicomi 131 | . 2 |
4 | 1, 3 | xchnxbi 670 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3ioran 983 truxortru 1409 truxorfal 1410 falxortru 1411 falxorfal 1412 intirr 4990 sucpw1nel3 7189 hashunlem 10717 |
Copyright terms: Public domain | W3C validator |