| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > notbii | Unicode version | ||
| Description: Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| notbii.1 | 
 | 
| Ref | Expression | 
|---|---|
| notbii | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | notbii.1 | 
. 2
 | |
| 2 | notbi 667 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: sylnbi 679 xchnxbi 681 xchbinx 683 nndc 852 xorcom 1399 xordidc 1410 dcfromnotnotr 1458 dcfromcon 1459 sbn 1971 neirr 2376 dfrex2dc 2488 ddifstab 3295 dfss4st 3396 ssddif 3397 difin 3400 difundi 3415 difindiss 3417 indifdir 3419 rabeq0 3480 abeq0 3481 snprc 3687 difprsnss 3760 uni0b 3864 disjnim 4024 brdif 4086 unidif0 4200 dtruex 4595 dcextest 4617 difopab 4799 cnvdif 5076 imadiflem 5337 imadif 5338 brprcneu 5551 poxp 6290 finexdc 6963 snexxph 7016 infmoti 7094 ismkvnex 7221 pw1nel3 7298 onntri35 7304 netap 7321 prltlu 7554 recexprlemdisj 7697 axpre-apti 7952 dfinfre 8983 fzdifsuc 10156 fzp1nel 10179 ntreq0 14368 bj-nnor 15380 bj-nndcALT 15404 nnti 15639 | 
| Copyright terms: Public domain | W3C validator |