| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notbii | Unicode version | ||
| Description: Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| notbii.1 |
|
| Ref | Expression |
|---|---|
| notbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbii.1 |
. 2
| |
| 2 | notbi 668 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnbi 680 xchnxbi 682 xchbinx 684 nndc 853 xorcom 1408 xordidc 1419 dcfromnotnotr 1467 dcfromcon 1468 sbn 1980 neirr 2385 dfrex2dc 2497 ddifstab 3305 dfss4st 3406 ssddif 3407 difin 3410 difundi 3425 difindiss 3427 indifdir 3429 rabeq0 3490 abeq0 3491 snprc 3698 difprsnss 3771 uni0b 3875 disjnim 4035 brdif 4098 unidif0 4212 dtruex 4608 dcextest 4630 difopab 4812 cnvdif 5090 imadiflem 5354 imadif 5355 brprcneu 5571 poxp 6320 finexdc 7001 snexxph 7054 infmoti 7132 ismkvnex 7259 pw1nel3 7345 onntri35 7351 netap 7368 prltlu 7602 recexprlemdisj 7745 axpre-apti 8000 dfinfre 9031 fzdifsuc 10205 fzp1nel 10228 ntreq0 14637 bj-nnor 15707 bj-nndcALT 15731 nnti 15966 |
| Copyright terms: Public domain | W3C validator |