![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > notbii | Unicode version |
Description: Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
notbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
notbii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbii.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | notbi 667 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sylnbi 679 xchnxbi 681 xchbinx 683 nndc 852 xorcom 1399 xordidc 1410 sbn 1968 neirr 2373 dfrex2dc 2485 ddifstab 3291 dfss4st 3392 ssddif 3393 difin 3396 difundi 3411 difindiss 3413 indifdir 3415 rabeq0 3476 abeq0 3477 snprc 3683 difprsnss 3756 uni0b 3860 disjnim 4020 brdif 4082 unidif0 4196 dtruex 4591 dcextest 4613 difopab 4795 cnvdif 5072 imadiflem 5333 imadif 5334 brprcneu 5547 poxp 6285 finexdc 6958 snexxph 7009 infmoti 7087 ismkvnex 7214 pw1nel3 7291 onntri35 7297 netap 7314 prltlu 7547 recexprlemdisj 7690 axpre-apti 7945 dfinfre 8975 fzdifsuc 10147 fzp1nel 10170 ntreq0 14300 bj-nnor 15226 bj-nndcALT 15250 nnti 15485 |
Copyright terms: Public domain | W3C validator |