![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > notbii | Unicode version |
Description: Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
notbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
notbii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbii.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | notbi 666 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: sylnbi 678 xchnxbi 680 xchbinx 682 nndc 851 xorcom 1388 xordidc 1399 sbn 1952 neirr 2356 dfrex2dc 2468 ddifstab 3268 dfss4st 3369 ssddif 3370 difin 3373 difundi 3388 difindiss 3390 indifdir 3392 rabeq0 3453 abeq0 3454 snprc 3658 difprsnss 3731 uni0b 3835 disjnim 3995 brdif 4057 unidif0 4168 dtruex 4559 dcextest 4581 difopab 4761 cnvdif 5036 imadiflem 5296 imadif 5297 brprcneu 5509 poxp 6233 finexdc 6902 snexxph 6949 infmoti 7027 ismkvnex 7153 pw1nel3 7230 onntri35 7236 netap 7253 prltlu 7486 recexprlemdisj 7629 axpre-apti 7884 dfinfre 8913 fzdifsuc 10081 fzp1nel 10104 ntreq0 13635 bj-nnor 14489 bj-nndcALT 14513 nnti 14747 |
Copyright terms: Public domain | W3C validator |