| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notbii | Unicode version | ||
| Description: Equivalence property for negation. Inference form. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| notbii.1 |
|
| Ref | Expression |
|---|---|
| notbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbii.1 |
. 2
| |
| 2 | notbi 670 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: sylnbi 682 xchnxbi 684 xchbinx 686 nndc 856 xorcom 1430 xordidc 1441 dcfromnotnotr 1490 dcfromcon 1491 sbn 2003 neirr 2409 dfrex2dc 2521 ddifstab 3336 dfss4st 3437 ssddif 3438 difin 3441 difundi 3456 difindiss 3458 indifdir 3460 rabeq0 3521 abeq0 3522 snprc 3731 difprsnss 3806 uni0b 3913 disjnim 4073 brdif 4137 unidif0 4251 dtruex 4651 dcextest 4673 difopab 4855 cnvdif 5135 imadiflem 5400 imadif 5401 brprcneu 5620 poxp 6378 finexdc 7064 snexxph 7117 infmoti 7195 ismkvnex 7322 pw1nel3 7416 onntri35 7422 netap 7440 prltlu 7674 recexprlemdisj 7817 axpre-apti 8072 dfinfre 9103 fzdifsuc 10277 fzp1nel 10300 swrdccatin2 11261 ntreq0 14806 bj-nnor 16098 bj-nndcALT 16122 nnti 16356 |
| Copyright terms: Public domain | W3C validator |