![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3i | Unicode version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitr3i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr3i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | bitr3i.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrri 207 3bitr3i 210 3bitr3ri 211 anandi 590 anandir 591 xchnxbi 681 orordi 774 orordir 775 sbco3v 1985 sbco4 2023 elsb1 2171 elsb2 2172 abeq1i 2305 cbvabw 2316 r19.41 2649 rexcom4a 2784 moeq 2936 mosubt 2938 2reuswapdc 2965 nfcdeq 2983 sbcid 3002 sbcco2 3009 sbc7 3013 sbcie2g 3020 eqsbc1 3026 sbcralt 3063 sbcrext 3064 cbvralcsf 3144 cbvrexcsf 3145 cbvrabcsf 3147 abss 3249 ssab 3250 difrab 3434 abn0m 3473 prsspw 3792 disjnim 4021 brab1 4077 unopab 4109 exss 4257 uniuni 4483 elvvv 4723 eliunxp 4802 ralxp 4806 rexxp 4807 opelco 4835 reldm0 4881 resieq 4953 resiexg 4988 iss 4989 imai 5022 cnvsym 5050 intasym 5051 asymref 5052 codir 5055 poirr2 5059 rninxp 5110 cnvsom 5210 funopg 5289 fin 5441 f1cnvcnv 5471 fndmin 5666 resoprab 6015 mpo2eqb 6029 ov6g 6058 offval 6140 dfopab2 6244 dfoprab3s 6245 fmpox 6255 spc2ed 6288 brtpos0 6307 dftpos3 6317 tpostpos 6319 ercnv 6610 xpcomco 6882 xpassen 6886 phpm 6923 ctssdccl 7172 elni2 7376 elfz2nn0 10181 elfzmlbp 10201 clim0 11431 nnwosdc 12179 isstructim 12635 xpscf 12933 srgrmhm 13493 ntreq0 14311 cnmptcom 14477 dedekindicclemicc 14811 |
Copyright terms: Public domain | W3C validator |