| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3i.1 |
|
| bitr3i.2 |
|
| Ref | Expression |
|---|---|
| bitr3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3i.1 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | bitr3i.2 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr3i 210 3bitr3ri 211 anandi 590 anandir 591 xchnxbi 682 orordi 775 orordir 776 sbco3v 1998 sbco4 2036 elsb1 2184 elsb2 2185 abeq1i 2318 cbvabw 2329 r19.41 2662 rexcom4a 2798 moeq 2952 mosubt 2954 2reuswapdc 2981 nfcdeq 2999 sbcid 3018 sbcco2 3025 sbc7 3029 sbcie2g 3036 eqsbc1 3042 sbcralt 3079 sbcrext 3080 cbvralcsf 3160 cbvrexcsf 3161 cbvrabcsf 3163 abss 3266 ssab 3267 difrab 3451 abn0m 3490 prsspw 3812 disjnim 4041 brab1 4099 unopab 4131 exss 4279 uniuni 4506 elvvv 4746 eliunxp 4825 ralxp 4829 rexxp 4830 opelco 4858 reldm0 4905 resieq 4978 resiexg 5013 iss 5014 imai 5047 cnvsym 5075 intasym 5076 asymref 5077 codir 5080 poirr2 5084 rninxp 5135 cnvsom 5235 funopg 5314 fin 5474 f1cnvcnv 5504 fndmin 5700 resoprab 6054 mpo2eqb 6068 ov6g 6097 offval 6179 dfopab2 6288 dfoprab3s 6289 fmpox 6299 spc2ed 6332 brtpos0 6351 dftpos3 6361 tpostpos 6363 ercnv 6654 xpcomco 6936 xpassen 6940 phpm 6977 ctssdccl 7228 elni2 7447 elfz2nn0 10254 elfzmlbp 10274 clim0 11671 nnwosdc 12435 isstructim 12921 xpscf 13254 srgrmhm 13831 ntreq0 14679 cnmptcom 14845 dedekindicclemicc 15179 |
| Copyright terms: Public domain | W3C validator |