![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3i | Unicode version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitr3i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr3i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | bitr3i.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrri 207 3bitr3i 210 3bitr3ri 211 anandi 590 anandir 591 xchnxbi 681 orordi 774 orordir 775 sbco3v 1985 sbco4 2023 elsb1 2171 elsb2 2172 abeq1i 2305 cbvabw 2316 r19.41 2649 rexcom4a 2784 moeq 2935 mosubt 2937 2reuswapdc 2964 nfcdeq 2982 sbcid 3001 sbcco2 3008 sbc7 3012 sbcie2g 3019 eqsbc1 3025 sbcralt 3062 sbcrext 3063 cbvralcsf 3143 cbvrexcsf 3144 cbvrabcsf 3146 abss 3248 ssab 3249 difrab 3433 abn0m 3472 prsspw 3791 disjnim 4020 brab1 4076 unopab 4108 exss 4256 uniuni 4482 elvvv 4722 eliunxp 4801 ralxp 4805 rexxp 4806 opelco 4834 reldm0 4880 resieq 4952 resiexg 4987 iss 4988 imai 5021 cnvsym 5049 intasym 5050 asymref 5051 codir 5054 poirr2 5058 rninxp 5109 cnvsom 5209 funopg 5288 fin 5440 f1cnvcnv 5470 fndmin 5665 resoprab 6014 mpo2eqb 6028 ov6g 6056 offval 6138 dfopab2 6242 dfoprab3s 6243 fmpox 6253 spc2ed 6286 brtpos0 6305 dftpos3 6315 tpostpos 6317 ercnv 6608 xpcomco 6880 xpassen 6884 phpm 6921 ctssdccl 7170 elni2 7374 elfz2nn0 10178 elfzmlbp 10198 clim0 11428 nnwosdc 12176 isstructim 12632 xpscf 12930 srgrmhm 13490 ntreq0 14300 cnmptcom 14466 dedekindicclemicc 14786 |
Copyright terms: Public domain | W3C validator |