| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3i.1 |
|
| bitr3i.2 |
|
| Ref | Expression |
|---|---|
| bitr3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3i.1 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | bitr3i.2 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr3i 210 3bitr3ri 211 anandi 592 anandir 593 xchnxbi 684 orordi 778 orordir 779 sbco3v 2020 sbco4 2058 elsb1 2207 elsb2 2208 abeq1i 2341 cbvabw 2352 r19.41 2686 rexcom4a 2824 moeq 2978 mosubt 2980 2reuswapdc 3007 nfcdeq 3025 sbcid 3044 sbcco2 3051 sbc7 3055 sbcie2g 3062 eqsbc1 3068 sbcralt 3105 sbcrext 3106 cbvralcsf 3187 cbvrexcsf 3188 cbvrabcsf 3190 abss 3293 ssab 3294 difrab 3478 abn0m 3517 prsspw 3842 disjnim 4072 brab1 4130 unopab 4162 exss 4312 uniuni 4541 elvvv 4781 eliunxp 4860 ralxp 4864 rexxp 4865 opelco 4893 reldm0 4940 resieq 5014 resiexg 5049 iss 5050 imai 5083 cnvsym 5111 intasym 5112 asymref 5113 codir 5116 poirr2 5120 rninxp 5171 cnvsom 5271 funopg 5351 fin 5511 f1cnvcnv 5541 fndmin 5741 resoprab 6099 mpo2eqb 6113 ov6g 6142 offval 6224 dfopab2 6333 dfoprab3s 6334 fmpox 6344 spc2ed 6377 brtpos0 6396 dftpos3 6406 tpostpos 6408 ercnv 6699 xpcomco 6981 xpassen 6985 phpm 7023 ctssdccl 7274 elni2 7497 elfz2nn0 10304 elfzmlbp 10324 clim0 11791 nnwosdc 12555 isstructim 13041 xpscf 13375 srgrmhm 13952 ntreq0 14800 cnmptcom 14966 dedekindicclemicc 15300 |
| Copyright terms: Public domain | W3C validator |