| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3i.1 |
|
| bitr3i.2 |
|
| Ref | Expression |
|---|---|
| bitr3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3i.1 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | bitr3i.2 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr3i 210 3bitr3ri 211 anandi 590 anandir 591 xchnxbi 681 orordi 774 orordir 775 sbco3v 1996 sbco4 2034 elsb1 2182 elsb2 2183 abeq1i 2316 cbvabw 2327 r19.41 2660 rexcom4a 2795 moeq 2947 mosubt 2949 2reuswapdc 2976 nfcdeq 2994 sbcid 3013 sbcco2 3020 sbc7 3024 sbcie2g 3031 eqsbc1 3037 sbcralt 3074 sbcrext 3075 cbvralcsf 3155 cbvrexcsf 3156 cbvrabcsf 3158 abss 3261 ssab 3262 difrab 3446 abn0m 3485 prsspw 3805 disjnim 4034 brab1 4090 unopab 4122 exss 4270 uniuni 4496 elvvv 4736 eliunxp 4815 ralxp 4819 rexxp 4820 opelco 4848 reldm0 4894 resieq 4966 resiexg 5001 iss 5002 imai 5035 cnvsym 5063 intasym 5064 asymref 5065 codir 5068 poirr2 5072 rninxp 5123 cnvsom 5223 funopg 5302 fin 5456 f1cnvcnv 5486 fndmin 5681 resoprab 6031 mpo2eqb 6045 ov6g 6074 offval 6156 dfopab2 6265 dfoprab3s 6266 fmpox 6276 spc2ed 6309 brtpos0 6328 dftpos3 6338 tpostpos 6340 ercnv 6631 xpcomco 6903 xpassen 6907 phpm 6944 ctssdccl 7195 elni2 7409 elfz2nn0 10216 elfzmlbp 10236 clim0 11515 nnwosdc 12279 isstructim 12765 xpscf 13097 srgrmhm 13674 ntreq0 14522 cnmptcom 14688 dedekindicclemicc 15022 |
| Copyright terms: Public domain | W3C validator |