![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3i | Unicode version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitr3i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr3i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | bitr3i.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrri 207 3bitr3i 210 3bitr3ri 211 anandi 590 anandir 591 xchnxbi 680 orordi 773 orordir 774 sbco3v 1969 sbco4 2007 elsb1 2155 elsb2 2156 abeq1i 2289 cbvabw 2300 r19.41 2632 rexcom4a 2761 moeq 2912 mosubt 2914 2reuswapdc 2941 nfcdeq 2959 sbcid 2978 sbcco2 2985 sbc7 2989 sbcie2g 2996 eqsbc1 3002 sbcralt 3039 sbcrext 3040 cbvralcsf 3119 cbvrexcsf 3120 cbvrabcsf 3122 abss 3224 ssab 3225 difrab 3409 abn0m 3448 prsspw 3765 disjnim 3994 brab1 4050 unopab 4082 exss 4227 uniuni 4451 elvvv 4689 eliunxp 4766 ralxp 4770 rexxp 4771 opelco 4799 reldm0 4845 resieq 4917 resiexg 4952 iss 4953 imai 4984 cnvsym 5012 intasym 5013 asymref 5014 codir 5017 poirr2 5021 rninxp 5072 cnvsom 5172 funopg 5250 fin 5402 f1cnvcnv 5432 fndmin 5623 resoprab 5970 mpo2eqb 5983 ov6g 6011 offval 6089 dfopab2 6189 dfoprab3s 6190 fmpox 6200 spc2ed 6233 brtpos0 6252 dftpos3 6262 tpostpos 6264 ercnv 6555 xpcomco 6825 xpassen 6829 phpm 6864 ctssdccl 7109 elni2 7312 elfz2nn0 10111 elfzmlbp 10131 clim0 11292 nnwosdc 12039 isstructim 12475 xpscf 12765 srgrmhm 13175 ntreq0 13602 cnmptcom 13768 dedekindicclemicc 14080 |
Copyright terms: Public domain | W3C validator |