| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3i.1 |
|
| bitr3i.2 |
|
| Ref | Expression |
|---|---|
| bitr3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3i.1 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | bitr3i.2 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr3i 210 3bitr3ri 211 anandi 590 anandir 591 xchnxbi 681 orordi 774 orordir 775 sbco3v 1996 sbco4 2034 elsb1 2182 elsb2 2183 abeq1i 2316 cbvabw 2327 r19.41 2660 rexcom4a 2795 moeq 2947 mosubt 2949 2reuswapdc 2976 nfcdeq 2994 sbcid 3013 sbcco2 3020 sbc7 3024 sbcie2g 3031 eqsbc1 3037 sbcralt 3074 sbcrext 3075 cbvralcsf 3155 cbvrexcsf 3156 cbvrabcsf 3158 abss 3261 ssab 3262 difrab 3446 abn0m 3485 prsspw 3805 disjnim 4034 brab1 4090 unopab 4122 exss 4270 uniuni 4497 elvvv 4737 eliunxp 4816 ralxp 4820 rexxp 4821 opelco 4849 reldm0 4895 resieq 4968 resiexg 5003 iss 5004 imai 5037 cnvsym 5065 intasym 5066 asymref 5067 codir 5070 poirr2 5074 rninxp 5125 cnvsom 5225 funopg 5304 fin 5461 f1cnvcnv 5491 fndmin 5686 resoprab 6040 mpo2eqb 6054 ov6g 6083 offval 6165 dfopab2 6274 dfoprab3s 6275 fmpox 6285 spc2ed 6318 brtpos0 6337 dftpos3 6347 tpostpos 6349 ercnv 6640 xpcomco 6920 xpassen 6924 phpm 6961 ctssdccl 7212 elni2 7426 elfz2nn0 10233 elfzmlbp 10253 clim0 11538 nnwosdc 12302 isstructim 12788 xpscf 13121 srgrmhm 13698 ntreq0 14546 cnmptcom 14712 dedekindicclemicc 15046 |
| Copyright terms: Public domain | W3C validator |