![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3i | Unicode version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
bitr3i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr3i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 132 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | bitr3i.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | bitri 184 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrri 207 3bitr3i 210 3bitr3ri 211 anandi 590 anandir 591 xchnxbi 680 orordi 773 orordir 774 sbco3v 1969 sbco4 2007 elsb1 2155 elsb2 2156 abeq1i 2289 cbvabw 2300 r19.41 2632 rexcom4a 2762 moeq 2913 mosubt 2915 2reuswapdc 2942 nfcdeq 2960 sbcid 2979 sbcco2 2986 sbc7 2990 sbcie2g 2997 eqsbc1 3003 sbcralt 3040 sbcrext 3041 cbvralcsf 3120 cbvrexcsf 3121 cbvrabcsf 3123 abss 3225 ssab 3226 difrab 3410 abn0m 3449 prsspw 3766 disjnim 3995 brab1 4051 unopab 4083 exss 4228 uniuni 4452 elvvv 4690 eliunxp 4767 ralxp 4771 rexxp 4772 opelco 4800 reldm0 4846 resieq 4918 resiexg 4953 iss 4954 imai 4985 cnvsym 5013 intasym 5014 asymref 5015 codir 5018 poirr2 5022 rninxp 5073 cnvsom 5173 funopg 5251 fin 5403 f1cnvcnv 5433 fndmin 5624 resoprab 5971 mpo2eqb 5984 ov6g 6012 offval 6090 dfopab2 6190 dfoprab3s 6191 fmpox 6201 spc2ed 6234 brtpos0 6253 dftpos3 6263 tpostpos 6265 ercnv 6556 xpcomco 6826 xpassen 6830 phpm 6865 ctssdccl 7110 elni2 7313 elfz2nn0 10112 elfzmlbp 10132 clim0 11293 nnwosdc 12040 isstructim 12476 xpscf 12766 srgrmhm 13177 ntreq0 13635 cnmptcom 13801 dedekindicclemicc 14113 |
Copyright terms: Public domain | W3C validator |