| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3i | Unicode version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3i.1 |
|
| bitr3i.2 |
|
| Ref | Expression |
|---|---|
| bitr3i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3i.1 |
. . 3
| |
| 2 | 1 | bicomi 132 |
. 2
|
| 3 | bitr3i.2 |
. 2
| |
| 4 | 2, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr3i 210 3bitr3ri 211 anandi 590 anandir 591 xchnxbi 681 orordi 774 orordir 775 sbco3v 1988 sbco4 2026 elsb1 2174 elsb2 2175 abeq1i 2308 cbvabw 2319 r19.41 2652 rexcom4a 2787 moeq 2939 mosubt 2941 2reuswapdc 2968 nfcdeq 2986 sbcid 3005 sbcco2 3012 sbc7 3016 sbcie2g 3023 eqsbc1 3029 sbcralt 3066 sbcrext 3067 cbvralcsf 3147 cbvrexcsf 3148 cbvrabcsf 3150 abss 3253 ssab 3254 difrab 3438 abn0m 3477 prsspw 3796 disjnim 4025 brab1 4081 unopab 4113 exss 4261 uniuni 4487 elvvv 4727 eliunxp 4806 ralxp 4810 rexxp 4811 opelco 4839 reldm0 4885 resieq 4957 resiexg 4992 iss 4993 imai 5026 cnvsym 5054 intasym 5055 asymref 5056 codir 5059 poirr2 5063 rninxp 5114 cnvsom 5214 funopg 5293 fin 5447 f1cnvcnv 5477 fndmin 5672 resoprab 6022 mpo2eqb 6036 ov6g 6065 offval 6147 dfopab2 6256 dfoprab3s 6257 fmpox 6267 spc2ed 6300 brtpos0 6319 dftpos3 6329 tpostpos 6331 ercnv 6622 xpcomco 6894 xpassen 6898 phpm 6935 ctssdccl 7186 elni2 7398 elfz2nn0 10204 elfzmlbp 10224 clim0 11467 nnwosdc 12231 isstructim 12717 xpscf 13049 srgrmhm 13626 ntreq0 14452 cnmptcom 14618 dedekindicclemicc 14952 |
| Copyright terms: Public domain | W3C validator |