ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imp31 GIF version

Theorem 3imp31 1191
Description: The importation inference 3imp 1188 with commutation of the first and third conjuncts of the assertion relative to the hypothesis. (Contributed by Alan Sare, 11-Sep-2016.)
Hypothesis
Ref Expression
3imp31.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
3imp31 ((𝜒𝜓𝜑) → 𝜃)

Proof of Theorem 3imp31
StepHypRef Expression
1 3imp31.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21com13 80 . 2 (𝜒 → (𝜓 → (𝜑𝜃)))
323imp 1188 1 ((𝜒𝜓𝜑) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  dvdsmodexp  11744
  Copyright terms: Public domain W3C validator