| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imp | GIF version | ||
| Description: Importation inference. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| 3imp | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 985 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | imp31 256 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: 3impa 1199 3imp31 1201 3imp231 1202 3impb 1204 3impia 1205 3impib 1206 3com23 1214 3an1rs 1224 3imp1 1225 3impd 1226 syl3an2 1286 syl3an3 1287 3jao 1316 biimp3ar 1361 poxp 6348 tfrlemibxssdm 6443 tfr1onlembxssdm 6459 tfrcllembxssdm 6472 nndi 6602 nnmass 6603 pr2nelem 7332 xnn0lenn0nn0 10029 difelfzle 10298 fzo1fzo0n0 10351 elfzo0z 10352 fzofzim 10356 elfzodifsumelfzo 10374 mulexp 10767 expadd 10770 expmul 10773 bernneq 10849 facdiv 10927 pfxfv 11182 swrdswrdlem 11202 pfxccat3 11232 reuccatpfxs1lem 11244 dvdsaddre2b 12318 addmodlteqALT 12336 ltoddhalfle 12370 halfleoddlt 12371 dfgcd2 12501 cncongr1 12591 oddprmgt2 12622 prmfac1 12640 infpnlem1 12848 dfgrp3me 13599 mulgaddcom 13649 mulginvcom 13650 fiinopn 14643 opnneissb 14794 blssps 15066 blss 15067 gausslemma2dlem1a 15702 2sqlem10 15769 ausgrumgrien 15933 ausgrusgrien 15934 ushgredgedg 15989 ushgredgedgloop 15991 |
| Copyright terms: Public domain | W3C validator |