| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imp | GIF version | ||
| Description: Importation inference. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| 3imp | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1004 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | imp31 256 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3impa 1218 3imp31 1220 3imp231 1221 3impb 1223 3impia 1224 3impib 1225 3com23 1233 3an1rs 1243 3imp1 1244 3impd 1245 syl3an2 1305 syl3an3 1306 3jao 1335 biimp3ar 1380 poxp 6384 tfrlemibxssdm 6479 tfr1onlembxssdm 6495 tfrcllembxssdm 6508 nndi 6640 nnmass 6641 pr2nelem 7372 xnn0lenn0nn0 10069 difelfzle 10338 fzo1fzo0n0 10391 elfzo0z 10392 fzofzim 10396 elfzodifsumelfzo 10415 mulexp 10808 expadd 10811 expmul 10814 bernneq 10890 facdiv 10968 pfxfv 11224 swrdswrdlem 11244 pfxccat3 11274 reuccatpfxs1lem 11286 dvdsaddre2b 12360 addmodlteqALT 12378 ltoddhalfle 12412 halfleoddlt 12413 dfgcd2 12543 cncongr1 12633 oddprmgt2 12664 prmfac1 12682 infpnlem1 12890 dfgrp3me 13641 mulgaddcom 13691 mulginvcom 13692 fiinopn 14686 opnneissb 14837 blssps 15109 blss 15110 gausslemma2dlem1a 15745 2sqlem10 15812 ausgrumgrien 15976 ausgrusgrien 15977 ushgredgedg 16032 ushgredgedgloop 16034 wlkl1loop 16079 |
| Copyright terms: Public domain | W3C validator |