| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imp | GIF version | ||
| Description: Importation inference. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| 3imp | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 982 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | imp31 256 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3impa 1196 3imp31 1198 3imp231 1199 3impb 1201 3impia 1202 3impib 1203 3com23 1211 3an1rs 1221 3imp1 1222 3impd 1223 syl3an2 1283 syl3an3 1284 3jao 1312 biimp3ar 1357 poxp 6299 tfrlemibxssdm 6394 tfr1onlembxssdm 6410 tfrcllembxssdm 6423 nndi 6553 nnmass 6554 pr2nelem 7272 xnn0lenn0nn0 9959 difelfzle 10228 fzo1fzo0n0 10278 elfzo0z 10279 fzofzim 10283 elfzodifsumelfzo 10296 mulexp 10689 expadd 10692 expmul 10695 bernneq 10771 facdiv 10849 dvdsaddre2b 12025 addmodlteqALT 12043 ltoddhalfle 12077 halfleoddlt 12078 dfgcd2 12208 cncongr1 12298 oddprmgt2 12329 prmfac1 12347 infpnlem1 12555 dfgrp3me 13304 mulgaddcom 13354 mulginvcom 13355 fiinopn 14348 opnneissb 14499 blssps 14771 blss 14772 gausslemma2dlem1a 15407 2sqlem10 15474 |
| Copyright terms: Public domain | W3C validator |