| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3imp | GIF version | ||
| Description: Importation inference. (Contributed by NM, 8-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| 3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
| Ref | Expression | 
|---|---|
| 3imp | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3an 982 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | imp31 256 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| 4 | 1, 3 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: 3impa 1196 3imp31 1198 3imp231 1199 3impb 1201 3impia 1202 3impib 1203 3com23 1211 3an1rs 1221 3imp1 1222 3impd 1223 syl3an2 1283 syl3an3 1284 3jao 1312 biimp3ar 1357 poxp 6290 tfrlemibxssdm 6385 tfr1onlembxssdm 6401 tfrcllembxssdm 6414 nndi 6544 nnmass 6545 pr2nelem 7258 xnn0lenn0nn0 9940 difelfzle 10209 fzo1fzo0n0 10259 elfzo0z 10260 fzofzim 10264 elfzodifsumelfzo 10277 mulexp 10670 expadd 10673 expmul 10676 bernneq 10752 facdiv 10830 dvdsaddre2b 12006 addmodlteqALT 12024 ltoddhalfle 12058 halfleoddlt 12059 dfgcd2 12181 cncongr1 12271 oddprmgt2 12302 prmfac1 12320 infpnlem1 12528 dfgrp3me 13232 mulgaddcom 13276 mulginvcom 13277 fiinopn 14240 opnneissb 14391 blssps 14663 blss 14664 gausslemma2dlem1a 15299 2sqlem10 15366 | 
| Copyright terms: Public domain | W3C validator |