| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imp | GIF version | ||
| Description: Importation inference. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| 3imp | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 982 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | imp31 256 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3impa 1196 3imp31 1198 3imp231 1199 3impb 1201 3impia 1202 3impib 1203 3com23 1211 3an1rs 1221 3imp1 1222 3impd 1223 syl3an2 1283 syl3an3 1284 3jao 1312 biimp3ar 1357 poxp 6299 tfrlemibxssdm 6394 tfr1onlembxssdm 6410 tfrcllembxssdm 6423 nndi 6553 nnmass 6554 pr2nelem 7270 xnn0lenn0nn0 9957 difelfzle 10226 fzo1fzo0n0 10276 elfzo0z 10277 fzofzim 10281 elfzodifsumelfzo 10294 mulexp 10687 expadd 10690 expmul 10693 bernneq 10769 facdiv 10847 dvdsaddre2b 12023 addmodlteqALT 12041 ltoddhalfle 12075 halfleoddlt 12076 dfgcd2 12206 cncongr1 12296 oddprmgt2 12327 prmfac1 12345 infpnlem1 12553 dfgrp3me 13302 mulgaddcom 13352 mulginvcom 13353 fiinopn 14324 opnneissb 14475 blssps 14747 blss 14748 gausslemma2dlem1a 15383 2sqlem10 15450 |
| Copyright terms: Public domain | W3C validator |