| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3imp | GIF version | ||
| Description: Importation inference. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| 3imp | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 983 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 3 | 2 | imp31 256 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | sylbi 121 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3impa 1197 3imp31 1199 3imp231 1200 3impb 1202 3impia 1203 3impib 1204 3com23 1212 3an1rs 1222 3imp1 1223 3impd 1224 syl3an2 1284 syl3an3 1285 3jao 1314 biimp3ar 1359 poxp 6325 tfrlemibxssdm 6420 tfr1onlembxssdm 6436 tfrcllembxssdm 6449 nndi 6579 nnmass 6580 pr2nelem 7306 xnn0lenn0nn0 9994 difelfzle 10263 fzo1fzo0n0 10314 elfzo0z 10315 fzofzim 10319 elfzodifsumelfzo 10337 mulexp 10730 expadd 10733 expmul 10736 bernneq 10812 facdiv 10890 pfxfv 11143 swrdswrdlem 11163 dvdsaddre2b 12196 addmodlteqALT 12214 ltoddhalfle 12248 halfleoddlt 12249 dfgcd2 12379 cncongr1 12469 oddprmgt2 12500 prmfac1 12518 infpnlem1 12726 dfgrp3me 13476 mulgaddcom 13526 mulginvcom 13527 fiinopn 14520 opnneissb 14671 blssps 14943 blss 14944 gausslemma2dlem1a 15579 2sqlem10 15646 |
| Copyright terms: Public domain | W3C validator |