Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3imp | GIF version |
Description: Importation inference. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3imp.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
3imp | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 970 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 3imp.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
3 | 2 | imp31 254 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | sylbi 120 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3impa 1184 3imp31 1186 3imp231 1187 3impb 1189 3impia 1190 3impib 1191 3com23 1199 3an1rs 1209 3imp1 1210 3impd 1211 syl3an2 1262 syl3an3 1263 3jao 1291 biimp3ar 1336 poxp 6200 tfrlemibxssdm 6295 tfr1onlembxssdm 6311 tfrcllembxssdm 6324 nndi 6454 nnmass 6455 pr2nelem 7147 xnn0lenn0nn0 9801 difelfzle 10069 fzo1fzo0n0 10118 elfzo0z 10119 fzofzim 10123 elfzodifsumelfzo 10136 mulexp 10494 expadd 10497 expmul 10500 bernneq 10575 facdiv 10651 addmodlteqALT 11797 ltoddhalfle 11830 halfleoddlt 11831 dfgcd2 11947 cncongr1 12035 oddprmgt2 12066 prmfac1 12084 infpnlem1 12289 fiinopn 12642 opnneissb 12795 blssps 13067 blss 13068 2sqlem10 13601 |
Copyright terms: Public domain | W3C validator |