![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdsmodexp | GIF version |
Description: If a positive integer divides another integer, this other integer is equal to its positive powers modulo the positive integer. (Formerly part of the proof for fermltl 12233). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by AV, 19-Mar-2022.) |
Ref | Expression |
---|---|
dvdsmodexp | ⊢ ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∥ 𝐴) → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdszrcl 11798 | . . 3 ⊢ (𝑁 ∥ 𝐴 → (𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ)) | |
2 | dvdsmod0 11799 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∥ 𝐴) → (𝐴 mod 𝑁) = 0) | |
3 | 2 | 3ad2antl2 1160 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑁 ∥ 𝐴) → (𝐴 mod 𝑁) = 0) |
4 | 3 | ex 115 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∥ 𝐴 → (𝐴 mod 𝑁) = 0)) |
5 | simpl3 1002 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝐵 ∈ ℕ) | |
6 | 5 | 0expd 10669 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (0↑𝐵) = 0) |
7 | 6 | oveq1d 5889 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → ((0↑𝐵) mod 𝑁) = (0 mod 𝑁)) |
8 | simpl1 1000 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝐴 ∈ ℤ) | |
9 | 0zd 9264 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 0 ∈ ℤ) | |
10 | nnnn0 9182 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0) | |
11 | 10 | 3ad2ant3 1020 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ0) |
12 | 11 | adantr 276 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝐵 ∈ ℕ0) |
13 | simpl2 1001 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝑁 ∈ ℕ) | |
14 | nnq 9632 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℚ) | |
15 | 13, 14 | syl 14 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝑁 ∈ ℚ) |
16 | nnrp 9662 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
17 | 16 | 3ad2ant2 1019 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝑁 ∈ ℝ+) |
18 | 17 | adantr 276 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝑁 ∈ ℝ+) |
19 | 18 | rpgt0d 9698 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 0 < 𝑁) |
20 | simpr 110 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (𝐴 mod 𝑁) = 0) | |
21 | q0mod 10354 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0) | |
22 | 15, 19, 21 | syl2anc 411 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (0 mod 𝑁) = 0) |
23 | 20, 22 | eqtr4d 2213 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (𝐴 mod 𝑁) = (0 mod 𝑁)) |
24 | 8, 9, 12, 15, 19, 23 | modqexp 10646 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → ((𝐴↑𝐵) mod 𝑁) = ((0↑𝐵) mod 𝑁)) |
25 | 7, 24, 23 | 3eqtr4d 2220 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁)) |
26 | 25 | ex 115 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁))) |
27 | 4, 26 | syld 45 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁 ∥ 𝐴 → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁))) |
28 | 27 | 3exp 1202 | . . . . 5 ⊢ (𝐴 ∈ ℤ → (𝑁 ∈ ℕ → (𝐵 ∈ ℕ → (𝑁 ∥ 𝐴 → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁))))) |
29 | 28 | com24 87 | . . . 4 ⊢ (𝐴 ∈ ℤ → (𝑁 ∥ 𝐴 → (𝐵 ∈ ℕ → (𝑁 ∈ ℕ → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁))))) |
30 | 29 | adantl 277 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁 ∥ 𝐴 → (𝐵 ∈ ℕ → (𝑁 ∈ ℕ → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁))))) |
31 | 1, 30 | mpcom 36 | . 2 ⊢ (𝑁 ∥ 𝐴 → (𝐵 ∈ ℕ → (𝑁 ∈ ℕ → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁)))) |
32 | 31 | 3imp31 1196 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∥ 𝐴) → ((𝐴↑𝐵) mod 𝑁) = (𝐴 mod 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 class class class wbr 4003 (class class class)co 5874 0cc0 7810 < clt 7991 ℕcn 8918 ℕ0cn0 9175 ℤcz 9252 ℚcq 9618 ℝ+crp 9652 mod cmo 10321 ↑cexp 10518 ∥ cdvds 11793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 ax-arch 7929 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-po 4296 df-iso 4297 df-iord 4366 df-on 4368 df-ilim 4369 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-recs 6305 df-frec 6391 df-pnf 7993 df-mnf 7994 df-xr 7995 df-ltxr 7996 df-le 7997 df-sub 8129 df-neg 8130 df-reap 8531 df-ap 8538 df-div 8629 df-inn 8919 df-n0 9176 df-z 9253 df-uz 9528 df-q 9619 df-rp 9653 df-fl 10269 df-mod 10322 df-seqfrec 10445 df-exp 10519 df-dvds 11794 |
This theorem is referenced by: fermltl 12233 |
Copyright terms: Public domain | W3C validator |