ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmodexp GIF version

Theorem dvdsmodexp 11801
Description: If a positive integer divides another integer, this other integer is equal to its positive powers modulo the positive integer. (Formerly part of the proof for fermltl 12233). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by AV, 19-Mar-2022.)
Assertion
Ref Expression
dvdsmodexp ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁𝐴) → ((𝐴𝐵) mod 𝑁) = (𝐴 mod 𝑁))

Proof of Theorem dvdsmodexp
StepHypRef Expression
1 dvdszrcl 11798 . . 3 (𝑁𝐴 → (𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ))
2 dvdsmod0 11799 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑁𝐴) → (𝐴 mod 𝑁) = 0)
323ad2antl2 1160 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝑁𝐴) → (𝐴 mod 𝑁) = 0)
43ex 115 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁𝐴 → (𝐴 mod 𝑁) = 0))
5 simpl3 1002 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝐵 ∈ ℕ)
650expd 10669 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (0↑𝐵) = 0)
76oveq1d 5889 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → ((0↑𝐵) mod 𝑁) = (0 mod 𝑁))
8 simpl1 1000 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝐴 ∈ ℤ)
9 0zd 9264 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 0 ∈ ℤ)
10 nnnn0 9182 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
11103ad2ant3 1020 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ0)
1211adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝐵 ∈ ℕ0)
13 simpl2 1001 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝑁 ∈ ℕ)
14 nnq 9632 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
1513, 14syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝑁 ∈ ℚ)
16 nnrp 9662 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
17163ad2ant2 1019 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝑁 ∈ ℝ+)
1817adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 𝑁 ∈ ℝ+)
1918rpgt0d 9698 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → 0 < 𝑁)
20 simpr 110 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (𝐴 mod 𝑁) = 0)
21 q0mod 10354 . . . . . . . . . . . 12 ((𝑁 ∈ ℚ ∧ 0 < 𝑁) → (0 mod 𝑁) = 0)
2215, 19, 21syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (0 mod 𝑁) = 0)
2320, 22eqtr4d 2213 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → (𝐴 mod 𝑁) = (0 mod 𝑁))
248, 9, 12, 15, 19, 23modqexp 10646 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → ((𝐴𝐵) mod 𝑁) = ((0↑𝐵) mod 𝑁))
257, 24, 233eqtr4d 2220 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝐴 mod 𝑁) = 0) → ((𝐴𝐵) mod 𝑁) = (𝐴 mod 𝑁))
2625ex 115 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 → ((𝐴𝐵) mod 𝑁) = (𝐴 mod 𝑁)))
274, 26syld 45 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝑁𝐴 → ((𝐴𝐵) mod 𝑁) = (𝐴 mod 𝑁)))
28273exp 1202 . . . . 5 (𝐴 ∈ ℤ → (𝑁 ∈ ℕ → (𝐵 ∈ ℕ → (𝑁𝐴 → ((𝐴𝐵) mod 𝑁) = (𝐴 mod 𝑁)))))
2928com24 87 . . . 4 (𝐴 ∈ ℤ → (𝑁𝐴 → (𝐵 ∈ ℕ → (𝑁 ∈ ℕ → ((𝐴𝐵) mod 𝑁) = (𝐴 mod 𝑁)))))
3029adantl 277 . . 3 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁𝐴 → (𝐵 ∈ ℕ → (𝑁 ∈ ℕ → ((𝐴𝐵) mod 𝑁) = (𝐴 mod 𝑁)))))
311, 30mpcom 36 . 2 (𝑁𝐴 → (𝐵 ∈ ℕ → (𝑁 ∈ ℕ → ((𝐴𝐵) mod 𝑁) = (𝐴 mod 𝑁))))
32313imp31 1196 1 ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁𝐴) → ((𝐴𝐵) mod 𝑁) = (𝐴 mod 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4003  (class class class)co 5874  0cc0 7810   < clt 7991  cn 8918  0cn0 9175  cz 9252  cq 9618  +crp 9652   mod cmo 10321  cexp 10518  cdvds 11793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-rp 9653  df-fl 10269  df-mod 10322  df-seqfrec 10445  df-exp 10519  df-dvds 11794
This theorem is referenced by:  fermltl  12233
  Copyright terms: Public domain W3C validator