| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com13 | GIF version | ||
| Description: Commutation of antecedents. Swap 1st and 3rd. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
| Ref | Expression |
|---|---|
| com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| com13 | ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| 3 | 2 | com23 78 | 1 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com24 87 an13s 567 an31s 570 3imp31 1220 3imp21 1222 funopg 5348 f1o2ndf1 6364 brecop 6762 fiintim 7081 elpq 9832 xnn0lenn0nn0 10049 elfz0ubfz0 10309 elfz0fzfz0 10310 fz0fzelfz0 10311 fz0fzdiffz0 10314 fzo1fzo0n0 10371 elfzodifsumelfzo 10394 ssfzo12 10417 ssfzo12bi 10418 facwordi 10949 fihashf1rn 10997 swrdswrdlem 11222 swrdswrd 11223 wrd2ind 11241 swrdccatin1 11243 pfxccatin12lem2 11249 swrdccat 11253 reuccatpfxs1lem 11264 oddnn02np1 12377 oddge22np1 12378 evennn02n 12379 evennn2n 12380 dfgcd2 12521 sqrt2irr 12670 lmodfopnelem1 14273 mpomulcn 15225 zabsle1 15663 gausslemma2dlem1a 15722 2lgsoddprm 15777 upgredg2vtx 15931 usgruspgrben 15969 usgredg2vlem2 16006 bj-inf2vnlem2 16264 |
| Copyright terms: Public domain | W3C validator |