![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > com13 | GIF version |
Description: Commutation of antecedents. Swap 1st and 3rd. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
com13 | ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com3r 78 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
3 | 2 | com23 77 | 1 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 |
This theorem is referenced by: com24 86 an13s 534 an31s 537 funopg 5048 f1o2ndf1 5993 brecop 6382 fiintim 6639 elfz0ubfz0 9536 elfz0fzfz0 9537 fz0fzelfz0 9538 fz0fzdiffz0 9541 fzo1fzo0n0 9594 elfzodifsumelfzo 9612 ssfzo12 9635 ssfzo12bi 9636 facwordi 10148 fihashf1rn 10197 oddnn02np1 11158 oddge22np1 11159 evennn02n 11160 evennn2n 11161 dfgcd2 11281 sqrt2irr 11419 bj-inf2vnlem2 11866 |
Copyright terms: Public domain | W3C validator |