| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com13 | GIF version | ||
| Description: Commutation of antecedents. Swap 1st and 3rd. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
| Ref | Expression |
|---|---|
| com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| com13 | ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| 3 | 2 | com23 78 | 1 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com24 87 an13s 567 an31s 570 3imp31 1199 3imp21 1201 funopg 5313 f1o2ndf1 6326 brecop 6724 fiintim 7042 elpq 9785 xnn0lenn0nn0 10002 elfz0ubfz0 10262 elfz0fzfz0 10263 fz0fzelfz0 10264 fz0fzdiffz0 10267 fzo1fzo0n0 10324 elfzodifsumelfzo 10347 ssfzo12 10370 ssfzo12bi 10371 facwordi 10902 fihashf1rn 10950 swrdswrdlem 11175 swrdswrd 11176 wrd2ind 11194 oddnn02np1 12261 oddge22np1 12262 evennn02n 12263 evennn2n 12264 dfgcd2 12405 sqrt2irr 12554 lmodfopnelem1 14156 mpomulcn 15108 zabsle1 15546 gausslemma2dlem1a 15605 2lgsoddprm 15660 bj-inf2vnlem2 16041 |
| Copyright terms: Public domain | W3C validator |