![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > com13 | GIF version |
Description: Commutation of antecedents. Swap 1st and 3rd. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
com13 | ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
3 | 2 | com23 78 | 1 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com24 87 an13s 567 an31s 570 3imp31 1196 3imp21 1198 funopg 5252 f1o2ndf1 6231 brecop 6627 fiintim 6930 elpq 9650 xnn0lenn0nn0 9867 elfz0ubfz0 10127 elfz0fzfz0 10128 fz0fzelfz0 10129 fz0fzdiffz0 10132 fzo1fzo0n0 10185 elfzodifsumelfzo 10203 ssfzo12 10226 ssfzo12bi 10227 facwordi 10722 fihashf1rn 10770 oddnn02np1 11887 oddge22np1 11888 evennn02n 11889 evennn2n 11890 dfgcd2 12017 sqrt2irr 12164 lmodfopnelem1 13419 zabsle1 14439 bj-inf2vnlem2 14762 |
Copyright terms: Public domain | W3C validator |