Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > com13 | GIF version |
Description: Commutation of antecedents. Swap 1st and 3rd. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
com13 | ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
3 | 2 | com23 78 | 1 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com24 87 an13s 562 an31s 565 3imp31 1191 3imp21 1193 funopg 5232 f1o2ndf1 6207 brecop 6603 fiintim 6906 elpq 9607 xnn0lenn0nn0 9822 elfz0ubfz0 10081 elfz0fzfz0 10082 fz0fzelfz0 10083 fz0fzdiffz0 10086 fzo1fzo0n0 10139 elfzodifsumelfzo 10157 ssfzo12 10180 ssfzo12bi 10181 facwordi 10674 fihashf1rn 10723 oddnn02np1 11839 oddge22np1 11840 evennn02n 11841 evennn2n 11842 dfgcd2 11969 sqrt2irr 12116 zabsle1 13694 bj-inf2vnlem2 14006 |
Copyright terms: Public domain | W3C validator |