Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > com13 | GIF version |
Description: Commutation of antecedents. Swap 1st and 3rd. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
com13 | ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
3 | 2 | com23 78 | 1 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com24 87 an13s 557 an31s 560 3imp31 1186 3imp21 1188 funopg 5222 f1o2ndf1 6196 brecop 6591 fiintim 6894 elpq 9586 xnn0lenn0nn0 9801 elfz0ubfz0 10060 elfz0fzfz0 10061 fz0fzelfz0 10062 fz0fzdiffz0 10065 fzo1fzo0n0 10118 elfzodifsumelfzo 10136 ssfzo12 10159 ssfzo12bi 10160 facwordi 10653 fihashf1rn 10702 oddnn02np1 11817 oddge22np1 11818 evennn02n 11819 evennn2n 11820 dfgcd2 11947 sqrt2irr 12094 zabsle1 13540 bj-inf2vnlem2 13853 |
Copyright terms: Public domain | W3C validator |