| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > com13 | GIF version | ||
| Description: Commutation of antecedents. Swap 1st and 3rd. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
| Ref | Expression |
|---|---|
| com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| com13 | ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
| 3 | 2 | com23 78 | 1 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: com24 87 an13s 567 an31s 570 3imp31 1220 3imp21 1222 funopg 5352 f1o2ndf1 6380 brecop 6780 fiintim 7101 elpq 9852 xnn0lenn0nn0 10069 elfz0ubfz0 10329 elfz0fzfz0 10330 fz0fzelfz0 10331 fz0fzdiffz0 10334 fzo1fzo0n0 10391 elfzodifsumelfzo 10415 ssfzo12 10438 ssfzo12bi 10439 facwordi 10970 fihashf1rn 11018 swrdswrdlem 11244 swrdswrd 11245 wrd2ind 11263 swrdccatin1 11265 pfxccatin12lem2 11271 swrdccat 11275 reuccatpfxs1lem 11286 oddnn02np1 12399 oddge22np1 12400 evennn02n 12401 evennn2n 12402 dfgcd2 12543 sqrt2irr 12692 lmodfopnelem1 14296 mpomulcn 15248 zabsle1 15686 gausslemma2dlem1a 15745 2lgsoddprm 15800 upgredg2vtx 15954 usgruspgrben 15992 usgredg2vlem2 16029 uspgr2wlkeq 16086 bj-inf2vnlem2 16358 |
| Copyright terms: Public domain | W3C validator |