![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > com13 | GIF version |
Description: Commutation of antecedents. Swap 1st and 3rd. (Contributed by NM, 25-Apr-1994.) (Proof shortened by Wolf Lammen, 28-Jul-2012.) |
Ref | Expression |
---|---|
com3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
com13 | ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | com3r 79 | . 2 ⊢ (𝜒 → (𝜑 → (𝜓 → 𝜃))) |
3 | 2 | com23 78 | 1 ⊢ (𝜒 → (𝜓 → (𝜑 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: com24 87 an13s 567 an31s 570 3imp31 1198 3imp21 1200 funopg 5288 f1o2ndf1 6281 brecop 6679 fiintim 6985 elpq 9714 xnn0lenn0nn0 9931 elfz0ubfz0 10191 elfz0fzfz0 10192 fz0fzelfz0 10193 fz0fzdiffz0 10196 fzo1fzo0n0 10250 elfzodifsumelfzo 10268 ssfzo12 10291 ssfzo12bi 10292 facwordi 10811 fihashf1rn 10859 oddnn02np1 12021 oddge22np1 12022 evennn02n 12023 evennn2n 12024 dfgcd2 12151 sqrt2irr 12300 lmodfopnelem1 13820 zabsle1 15115 gausslemma2dlem1a 15174 bj-inf2vnlem2 15463 |
Copyright terms: Public domain | W3C validator |