Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > a1i13 | GIF version |
Description: Add two antecedents to a wff. (Contributed by Jeff Hankins, 4-Aug-2009.) |
Ref | Expression |
---|---|
a1i13.1 | ⊢ (𝜓 → 𝜃) |
Ref | Expression |
---|---|
a1i13 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a1i13.1 | . . 3 ⊢ (𝜓 → 𝜃) | |
2 | 1 | a1d 22 | . 2 ⊢ (𝜓 → (𝜒 → 𝜃)) |
3 | 2 | a1i 9 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: xpfi 6895 seq3fveq2 10404 seq3shft2 10408 seq3split 10414 |
Copyright terms: Public domain | W3C validator |