ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3fveq2 GIF version

Theorem seq3fveq2 10499
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
Hypotheses
Ref Expression
seq3fveq2.1 (𝜑𝐾 ∈ (ℤ𝑀))
seq3fveq2.2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
seq3fveq2.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3fveq2.g ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
seq3fveq2.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seq3fveq2.3 (𝜑𝑁 ∈ (ℤ𝐾))
seq3fveq2.4 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
seq3fveq2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐹   𝑘,𝐺,𝑥,𝑦   𝑘,𝐾,𝑥,𝑦   𝑘,𝑁,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦   𝑘,𝑀,𝑥,𝑦   + ,𝑘,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦

Proof of Theorem seq3fveq2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3fveq2.3 . . 3 (𝜑𝑁 ∈ (ℤ𝐾))
2 eluzfz2 10061 . . 3 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (𝐾...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝐾...𝑁))
4 eleq1 2252 . . . . . 6 (𝑧 = 𝐾 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁)))
5 fveq2 5534 . . . . . . 7 (𝑧 = 𝐾 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝐾))
6 fveq2 5534 . . . . . . 7 (𝑧 = 𝐾 → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘𝐾))
75, 6eqeq12d 2204 . . . . . 6 (𝑧 = 𝐾 → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))
84, 7imbi12d 234 . . . . 5 (𝑧 = 𝐾 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))))
98imbi2d 230 . . . 4 (𝑧 = 𝐾 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))))
10 eleq1 2252 . . . . . 6 (𝑧 = 𝑤 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝑤 ∈ (𝐾...𝑁)))
11 fveq2 5534 . . . . . . 7 (𝑧 = 𝑤 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑤))
12 fveq2 5534 . . . . . . 7 (𝑧 = 𝑤 → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑤))
1311, 12eqeq12d 2204 . . . . . 6 (𝑧 = 𝑤 → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤)))
1410, 13imbi12d 234 . . . . 5 (𝑧 = 𝑤 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤))))
1514imbi2d 230 . . . 4 (𝑧 = 𝑤 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤)))))
16 eleq1 2252 . . . . . 6 (𝑧 = (𝑤 + 1) → (𝑧 ∈ (𝐾...𝑁) ↔ (𝑤 + 1) ∈ (𝐾...𝑁)))
17 fveq2 5534 . . . . . . 7 (𝑧 = (𝑤 + 1) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘(𝑤 + 1)))
18 fveq2 5534 . . . . . . 7 (𝑧 = (𝑤 + 1) → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)))
1917, 18eqeq12d 2204 . . . . . 6 (𝑧 = (𝑤 + 1) → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))))
2016, 19imbi12d 234 . . . . 5 (𝑧 = (𝑤 + 1) → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)))))
2120imbi2d 230 . . . 4 (𝑧 = (𝑤 + 1) → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))))))
22 eleq1 2252 . . . . . 6 (𝑧 = 𝑁 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁)))
23 fveq2 5534 . . . . . . 7 (𝑧 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑁))
24 fveq2 5534 . . . . . . 7 (𝑧 = 𝑁 → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑁))
2523, 24eqeq12d 2204 . . . . . 6 (𝑧 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))
2622, 25imbi12d 234 . . . . 5 (𝑧 = 𝑁 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))
2726imbi2d 230 . . . 4 (𝑧 = 𝑁 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))))
28 seq3fveq2.2 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
29 seq3fveq2.1 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑀))
30 eluzelz 9566 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
3129, 30syl 14 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
32 seq3fveq2.g . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
33 seq3fveq2.pl . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3431, 32, 33seq3-1 10490 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐺)‘𝐾) = (𝐺𝐾))
3528, 34eqtr4d 2225 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))
3635a1i13 24 . . . 4 (𝐾 ∈ ℤ → (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))))
37 peano2fzr 10066 . . . . . . . 8 ((𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁)) → 𝑤 ∈ (𝐾...𝑁))
3837adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (𝐾...𝑁))
3938expr 375 . . . . . 6 ((𝜑𝑤 ∈ (ℤ𝐾)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → 𝑤 ∈ (𝐾...𝑁)))
4039imim1d 75 . . . . 5 ((𝜑𝑤 ∈ (ℤ𝐾)) → ((𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤))))
41 oveq1 5902 . . . . . 6 ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤) → ((seq𝑀( + , 𝐹)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1))))
42 simprl 529 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (ℤ𝐾))
4329adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝐾 ∈ (ℤ𝑀))
44 uztrn 9573 . . . . . . . . 9 ((𝑤 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑤 ∈ (ℤ𝑀))
4542, 43, 44syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (ℤ𝑀))
46 seq3fveq2.f . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4746adantlr 477 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4833adantlr 477 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4945, 47, 48seq3p1 10492 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = ((seq𝑀( + , 𝐹)‘𝑤) + (𝐹‘(𝑤 + 1))))
5032adantlr 477 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
5142, 50, 48seq3p1 10492 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑤 + 1)) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐺‘(𝑤 + 1))))
52 fveq2 5534 . . . . . . . . . . 11 (𝑘 = (𝑤 + 1) → (𝐹𝑘) = (𝐹‘(𝑤 + 1)))
53 fveq2 5534 . . . . . . . . . . 11 (𝑘 = (𝑤 + 1) → (𝐺𝑘) = (𝐺‘(𝑤 + 1)))
5452, 53eqeq12d 2204 . . . . . . . . . 10 (𝑘 = (𝑤 + 1) → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1))))
55 seq3fveq2.4 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
5655ralrimiva 2563 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
5756adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
58 eluzp1p1 9582 . . . . . . . . . . . 12 (𝑤 ∈ (ℤ𝐾) → (𝑤 + 1) ∈ (ℤ‘(𝐾 + 1)))
5958ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝑤 + 1) ∈ (ℤ‘(𝐾 + 1)))
60 elfzuz3 10051 . . . . . . . . . . . 12 ((𝑤 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ‘(𝑤 + 1)))
6160ad2antll 491 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ‘(𝑤 + 1)))
62 elfzuzb 10048 . . . . . . . . . . 11 ((𝑤 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑤 + 1) ∈ (ℤ‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ‘(𝑤 + 1))))
6359, 61, 62sylanbrc 417 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝑤 + 1) ∈ ((𝐾 + 1)...𝑁))
6454, 57, 63rspcdva 2861 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1)))
6564oveq2d 5911 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐺‘(𝑤 + 1))))
6651, 65eqtr4d 2225 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑤 + 1)) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1))))
6749, 66eqeq12d 2204 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)) ↔ ((seq𝑀( + , 𝐹)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1)))))
6841, 67imbitrrid 156 . . . . 5 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))))
6940, 68animpimp2impd 559 . . . 4 (𝑤 ∈ (ℤ𝐾) → ((𝜑 → (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤))) → (𝜑 → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))))))
709, 15, 21, 27, 36, 69uzind4 9617 . . 3 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))
711, 70mpcom 36 . 2 (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))
723, 71mpd 13 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  wral 2468  cfv 5235  (class class class)co 5895  1c1 7841   + caddc 7843  cz 9282  cuz 9557  ...cfz 10037  seqcseq 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-frec 6415  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-inn 8949  df-n0 9206  df-z 9283  df-uz 9558  df-fz 10038  df-seqfrec 10476
This theorem is referenced by:  seq3feq2  10500  seq3fveq  10501
  Copyright terms: Public domain W3C validator