ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3fveq2 GIF version

Theorem seq3fveq2 10642
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
Hypotheses
Ref Expression
seq3fveq2.1 (𝜑𝐾 ∈ (ℤ𝑀))
seq3fveq2.2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
seq3fveq2.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3fveq2.g ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
seq3fveq2.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seq3fveq2.3 (𝜑𝑁 ∈ (ℤ𝐾))
seq3fveq2.4 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
seq3fveq2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐹   𝑘,𝐺,𝑥,𝑦   𝑘,𝐾,𝑥,𝑦   𝑘,𝑁,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦   𝑘,𝑀,𝑥,𝑦   + ,𝑘,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦

Proof of Theorem seq3fveq2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3fveq2.3 . . 3 (𝜑𝑁 ∈ (ℤ𝐾))
2 eluzfz2 10174 . . 3 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (𝐾...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝐾...𝑁))
4 eleq1 2269 . . . . . 6 (𝑧 = 𝐾 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁)))
5 fveq2 5589 . . . . . . 7 (𝑧 = 𝐾 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝐾))
6 fveq2 5589 . . . . . . 7 (𝑧 = 𝐾 → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘𝐾))
75, 6eqeq12d 2221 . . . . . 6 (𝑧 = 𝐾 → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))
84, 7imbi12d 234 . . . . 5 (𝑧 = 𝐾 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))))
98imbi2d 230 . . . 4 (𝑧 = 𝐾 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))))
10 eleq1 2269 . . . . . 6 (𝑧 = 𝑤 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝑤 ∈ (𝐾...𝑁)))
11 fveq2 5589 . . . . . . 7 (𝑧 = 𝑤 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑤))
12 fveq2 5589 . . . . . . 7 (𝑧 = 𝑤 → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑤))
1311, 12eqeq12d 2221 . . . . . 6 (𝑧 = 𝑤 → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤)))
1410, 13imbi12d 234 . . . . 5 (𝑧 = 𝑤 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤))))
1514imbi2d 230 . . . 4 (𝑧 = 𝑤 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤)))))
16 eleq1 2269 . . . . . 6 (𝑧 = (𝑤 + 1) → (𝑧 ∈ (𝐾...𝑁) ↔ (𝑤 + 1) ∈ (𝐾...𝑁)))
17 fveq2 5589 . . . . . . 7 (𝑧 = (𝑤 + 1) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘(𝑤 + 1)))
18 fveq2 5589 . . . . . . 7 (𝑧 = (𝑤 + 1) → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)))
1917, 18eqeq12d 2221 . . . . . 6 (𝑧 = (𝑤 + 1) → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))))
2016, 19imbi12d 234 . . . . 5 (𝑧 = (𝑤 + 1) → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)))))
2120imbi2d 230 . . . 4 (𝑧 = (𝑤 + 1) → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))))))
22 eleq1 2269 . . . . . 6 (𝑧 = 𝑁 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁)))
23 fveq2 5589 . . . . . . 7 (𝑧 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑁))
24 fveq2 5589 . . . . . . 7 (𝑧 = 𝑁 → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑁))
2523, 24eqeq12d 2221 . . . . . 6 (𝑧 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))
2622, 25imbi12d 234 . . . . 5 (𝑧 = 𝑁 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))
2726imbi2d 230 . . . 4 (𝑧 = 𝑁 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))))
28 seq3fveq2.2 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
29 seq3fveq2.1 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑀))
30 eluzelz 9677 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
3129, 30syl 14 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
32 seq3fveq2.g . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
33 seq3fveq2.pl . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3431, 32, 33seq3-1 10629 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐺)‘𝐾) = (𝐺𝐾))
3528, 34eqtr4d 2242 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))
3635a1i13 24 . . . 4 (𝐾 ∈ ℤ → (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))))
37 peano2fzr 10179 . . . . . . . 8 ((𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁)) → 𝑤 ∈ (𝐾...𝑁))
3837adantl 277 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (𝐾...𝑁))
3938expr 375 . . . . . 6 ((𝜑𝑤 ∈ (ℤ𝐾)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → 𝑤 ∈ (𝐾...𝑁)))
4039imim1d 75 . . . . 5 ((𝜑𝑤 ∈ (ℤ𝐾)) → ((𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤))))
41 oveq1 5964 . . . . . 6 ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤) → ((seq𝑀( + , 𝐹)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1))))
42 simprl 529 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (ℤ𝐾))
4329adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝐾 ∈ (ℤ𝑀))
44 uztrn 9685 . . . . . . . . 9 ((𝑤 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑤 ∈ (ℤ𝑀))
4542, 43, 44syl2anc 411 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (ℤ𝑀))
46 seq3fveq2.f . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4746adantlr 477 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4833adantlr 477 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4945, 47, 48seq3p1 10632 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = ((seq𝑀( + , 𝐹)‘𝑤) + (𝐹‘(𝑤 + 1))))
5032adantlr 477 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
5142, 50, 48seq3p1 10632 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑤 + 1)) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐺‘(𝑤 + 1))))
52 fveq2 5589 . . . . . . . . . . 11 (𝑘 = (𝑤 + 1) → (𝐹𝑘) = (𝐹‘(𝑤 + 1)))
53 fveq2 5589 . . . . . . . . . . 11 (𝑘 = (𝑤 + 1) → (𝐺𝑘) = (𝐺‘(𝑤 + 1)))
5452, 53eqeq12d 2221 . . . . . . . . . 10 (𝑘 = (𝑤 + 1) → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1))))
55 seq3fveq2.4 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
5655ralrimiva 2580 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
5756adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
58 eluzp1p1 9694 . . . . . . . . . . . 12 (𝑤 ∈ (ℤ𝐾) → (𝑤 + 1) ∈ (ℤ‘(𝐾 + 1)))
5958ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝑤 + 1) ∈ (ℤ‘(𝐾 + 1)))
60 elfzuz3 10164 . . . . . . . . . . . 12 ((𝑤 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ‘(𝑤 + 1)))
6160ad2antll 491 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ‘(𝑤 + 1)))
62 elfzuzb 10161 . . . . . . . . . . 11 ((𝑤 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑤 + 1) ∈ (ℤ‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ‘(𝑤 + 1))))
6359, 61, 62sylanbrc 417 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝑤 + 1) ∈ ((𝐾 + 1)...𝑁))
6454, 57, 63rspcdva 2886 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1)))
6564oveq2d 5973 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐺‘(𝑤 + 1))))
6651, 65eqtr4d 2242 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑤 + 1)) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1))))
6749, 66eqeq12d 2221 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)) ↔ ((seq𝑀( + , 𝐹)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1)))))
6841, 67imbitrrid 156 . . . . 5 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))))
6940, 68animpimp2impd 559 . . . 4 (𝑤 ∈ (ℤ𝐾) → ((𝜑 → (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤))) → (𝜑 → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))))))
709, 15, 21, 27, 36, 69uzind4 9729 . . 3 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))
711, 70mpcom 36 . 2 (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))
723, 71mpd 13 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  cfv 5280  (class class class)co 5957  1c1 7946   + caddc 7948  cz 9392  cuz 9668  ...cfz 10150  seqcseq 10614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-seqfrec 10615
This theorem is referenced by:  seq3feq2  10643  seq3fveq  10646  gsumsplit1r  13305
  Copyright terms: Public domain W3C validator