| Step | Hyp | Ref
| Expression |
| 1 | | seq3fveq2.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 2 | | eluzfz2 10107 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → 𝑁 ∈ (𝐾...𝑁)) |
| 3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝐾...𝑁)) |
| 4 | | eleq1 2259 |
. . . . . 6
⊢ (𝑧 = 𝐾 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁))) |
| 5 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑧 = 𝐾 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝐾)) |
| 6 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑧 = 𝐾 → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘𝐾)) |
| 7 | 5, 6 | eqeq12d 2211 |
. . . . . 6
⊢ (𝑧 = 𝐾 → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))) |
| 8 | 4, 7 | imbi12d 234 |
. . . . 5
⊢ (𝑧 = 𝐾 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))) |
| 9 | 8 | imbi2d 230 |
. . . 4
⊢ (𝑧 = 𝐾 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))))) |
| 10 | | eleq1 2259 |
. . . . . 6
⊢ (𝑧 = 𝑤 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝑤 ∈ (𝐾...𝑁))) |
| 11 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑤)) |
| 12 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑤)) |
| 13 | 11, 12 | eqeq12d 2211 |
. . . . . 6
⊢ (𝑧 = 𝑤 → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤))) |
| 14 | 10, 13 | imbi12d 234 |
. . . . 5
⊢ (𝑧 = 𝑤 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤)))) |
| 15 | 14 | imbi2d 230 |
. . . 4
⊢ (𝑧 = 𝑤 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤))))) |
| 16 | | eleq1 2259 |
. . . . . 6
⊢ (𝑧 = (𝑤 + 1) → (𝑧 ∈ (𝐾...𝑁) ↔ (𝑤 + 1) ∈ (𝐾...𝑁))) |
| 17 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑧 = (𝑤 + 1) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘(𝑤 + 1))) |
| 18 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑧 = (𝑤 + 1) → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))) |
| 19 | 17, 18 | eqeq12d 2211 |
. . . . . 6
⊢ (𝑧 = (𝑤 + 1) → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)))) |
| 20 | 16, 19 | imbi12d 234 |
. . . . 5
⊢ (𝑧 = (𝑤 + 1) → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))))) |
| 21 | 20 | imbi2d 230 |
. . . 4
⊢ (𝑧 = (𝑤 + 1) → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)))))) |
| 22 | | eleq1 2259 |
. . . . . 6
⊢ (𝑧 = 𝑁 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁))) |
| 23 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑧 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 24 | | fveq2 5558 |
. . . . . . 7
⊢ (𝑧 = 𝑁 → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑁)) |
| 25 | 23, 24 | eqeq12d 2211 |
. . . . . 6
⊢ (𝑧 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))) |
| 26 | 22, 25 | imbi12d 234 |
. . . . 5
⊢ (𝑧 = 𝑁 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))) |
| 27 | 26 | imbi2d 230 |
. . . 4
⊢ (𝑧 = 𝑁 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))) |
| 28 | | seq3fveq2.2 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) |
| 29 | | seq3fveq2.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 30 | | eluzelz 9610 |
. . . . . . . 8
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝐾 ∈ ℤ) |
| 31 | 29, 30 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 32 | | seq3fveq2.g |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) |
| 33 | | seq3fveq2.pl |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 34 | 31, 32, 33 | seq3-1 10554 |
. . . . . 6
⊢ (𝜑 → (seq𝐾( + , 𝐺)‘𝐾) = (𝐺‘𝐾)) |
| 35 | 28, 34 | eqtr4d 2232 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)) |
| 36 | 35 | a1i13 24 |
. . . 4
⊢ (𝐾 ∈ ℤ → (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))) |
| 37 | | peano2fzr 10112 |
. . . . . . . 8
⊢ ((𝑤 ∈
(ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁)) → 𝑤 ∈ (𝐾...𝑁)) |
| 38 | 37 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (𝐾...𝑁)) |
| 39 | 38 | expr 375 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (ℤ≥‘𝐾)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → 𝑤 ∈ (𝐾...𝑁))) |
| 40 | 39 | imim1d 75 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ (ℤ≥‘𝐾)) → ((𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤)))) |
| 41 | | oveq1 5929 |
. . . . . 6
⊢
((seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤) → ((seq𝑀( + , 𝐹)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1)))) |
| 42 | | simprl 529 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (ℤ≥‘𝐾)) |
| 43 | 29 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 44 | | uztrn 9618 |
. . . . . . . . 9
⊢ ((𝑤 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑤 ∈ (ℤ≥‘𝑀)) |
| 45 | 42, 43, 44 | syl2anc 411 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (ℤ≥‘𝑀)) |
| 46 | | seq3fveq2.f |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 47 | 46 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 48 | 33 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 49 | 45, 47, 48 | seq3p1 10557 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = ((seq𝑀( + , 𝐹)‘𝑤) + (𝐹‘(𝑤 + 1)))) |
| 50 | 32 | adantlr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) |
| 51 | 42, 50, 48 | seq3p1 10557 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑤 + 1)) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐺‘(𝑤 + 1)))) |
| 52 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑤 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑤 + 1))) |
| 53 | | fveq2 5558 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑤 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑤 + 1))) |
| 54 | 52, 53 | eqeq12d 2211 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑤 + 1) → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1)))) |
| 55 | | seq3fveq2.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| 56 | 55 | ralrimiva 2570 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹‘𝑘) = (𝐺‘𝑘)) |
| 57 | 56 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹‘𝑘) = (𝐺‘𝑘)) |
| 58 | | eluzp1p1 9627 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈
(ℤ≥‘𝐾) → (𝑤 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
| 59 | 58 | ad2antrl 490 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝑤 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
| 60 | | elfzuz3 10097 |
. . . . . . . . . . . 12
⊢ ((𝑤 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘(𝑤 + 1))) |
| 61 | 60 | ad2antll 491 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ≥‘(𝑤 + 1))) |
| 62 | | elfzuzb 10094 |
. . . . . . . . . . 11
⊢ ((𝑤 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑤 + 1) ∈
(ℤ≥‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑤 + 1)))) |
| 63 | 59, 61, 62 | sylanbrc 417 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝑤 + 1) ∈ ((𝐾 + 1)...𝑁)) |
| 64 | 54, 57, 63 | rspcdva 2873 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1))) |
| 65 | 64 | oveq2d 5938 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐺‘(𝑤 + 1)))) |
| 66 | 51, 65 | eqtr4d 2232 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑤 + 1)) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1)))) |
| 67 | 49, 66 | eqeq12d 2211 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)) ↔ ((seq𝑀( + , 𝐹)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1))))) |
| 68 | 41, 67 | imbitrrid 156 |
. . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)))) |
| 69 | 40, 68 | animpimp2impd 559 |
. . . 4
⊢ (𝑤 ∈
(ℤ≥‘𝐾) → ((𝜑 → (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤))) → (𝜑 → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)))))) |
| 70 | 9, 15, 21, 27, 36, 69 | uzind4 9662 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))) |
| 71 | 1, 70 | mpcom 36 |
. 2
⊢ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))) |
| 72 | 3, 71 | mpd 13 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)) |