ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3fveq2 GIF version

Theorem seq3fveq2 10425
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
Hypotheses
Ref Expression
seq3fveq2.1 (𝜑𝐾 ∈ (ℤ𝑀))
seq3fveq2.2 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
seq3fveq2.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3fveq2.g ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
seq3fveq2.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seq3fveq2.3 (𝜑𝑁 ∈ (ℤ𝐾))
seq3fveq2.4 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
seq3fveq2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐹   𝑘,𝐺,𝑥,𝑦   𝑘,𝐾,𝑥,𝑦   𝑘,𝑁,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦   𝑘,𝑀,𝑥,𝑦   + ,𝑘,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦

Proof of Theorem seq3fveq2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seq3fveq2.3 . . 3 (𝜑𝑁 ∈ (ℤ𝐾))
2 eluzfz2 9988 . . 3 (𝑁 ∈ (ℤ𝐾) → 𝑁 ∈ (𝐾...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝐾...𝑁))
4 eleq1 2233 . . . . . 6 (𝑧 = 𝐾 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁)))
5 fveq2 5496 . . . . . . 7 (𝑧 = 𝐾 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝐾))
6 fveq2 5496 . . . . . . 7 (𝑧 = 𝐾 → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘𝐾))
75, 6eqeq12d 2185 . . . . . 6 (𝑧 = 𝐾 → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))
84, 7imbi12d 233 . . . . 5 (𝑧 = 𝐾 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))))
98imbi2d 229 . . . 4 (𝑧 = 𝐾 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))))
10 eleq1 2233 . . . . . 6 (𝑧 = 𝑤 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝑤 ∈ (𝐾...𝑁)))
11 fveq2 5496 . . . . . . 7 (𝑧 = 𝑤 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑤))
12 fveq2 5496 . . . . . . 7 (𝑧 = 𝑤 → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑤))
1311, 12eqeq12d 2185 . . . . . 6 (𝑧 = 𝑤 → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤)))
1410, 13imbi12d 233 . . . . 5 (𝑧 = 𝑤 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤))))
1514imbi2d 229 . . . 4 (𝑧 = 𝑤 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤)))))
16 eleq1 2233 . . . . . 6 (𝑧 = (𝑤 + 1) → (𝑧 ∈ (𝐾...𝑁) ↔ (𝑤 + 1) ∈ (𝐾...𝑁)))
17 fveq2 5496 . . . . . . 7 (𝑧 = (𝑤 + 1) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘(𝑤 + 1)))
18 fveq2 5496 . . . . . . 7 (𝑧 = (𝑤 + 1) → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)))
1917, 18eqeq12d 2185 . . . . . 6 (𝑧 = (𝑤 + 1) → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))))
2016, 19imbi12d 233 . . . . 5 (𝑧 = (𝑤 + 1) → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)))))
2120imbi2d 229 . . . 4 (𝑧 = (𝑤 + 1) → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))))))
22 eleq1 2233 . . . . . 6 (𝑧 = 𝑁 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁)))
23 fveq2 5496 . . . . . . 7 (𝑧 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝑀( + , 𝐹)‘𝑁))
24 fveq2 5496 . . . . . . 7 (𝑧 = 𝑁 → (seq𝐾( + , 𝐺)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑁))
2523, 24eqeq12d 2185 . . . . . 6 (𝑧 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))
2622, 25imbi12d 233 . . . . 5 (𝑧 = 𝑁 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))
2726imbi2d 229 . . . 4 (𝑧 = 𝑁 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑧) = (seq𝐾( + , 𝐺)‘𝑧))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))))
28 seq3fveq2.2 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺𝐾))
29 seq3fveq2.1 . . . . . . . 8 (𝜑𝐾 ∈ (ℤ𝑀))
30 eluzelz 9496 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
3129, 30syl 14 . . . . . . 7 (𝜑𝐾 ∈ ℤ)
32 seq3fveq2.g . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
33 seq3fveq2.pl . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3431, 32, 33seq3-1 10416 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐺)‘𝐾) = (𝐺𝐾))
3528, 34eqtr4d 2206 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))
3635a1i13 24 . . . 4 (𝐾 ∈ ℤ → (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))))
37 peano2fzr 9993 . . . . . . . 8 ((𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁)) → 𝑤 ∈ (𝐾...𝑁))
3837adantl 275 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (𝐾...𝑁))
3938expr 373 . . . . . 6 ((𝜑𝑤 ∈ (ℤ𝐾)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → 𝑤 ∈ (𝐾...𝑁)))
4039imim1d 75 . . . . 5 ((𝜑𝑤 ∈ (ℤ𝐾)) → ((𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤))))
41 oveq1 5860 . . . . . 6 ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤) → ((seq𝑀( + , 𝐹)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1))))
42 simprl 526 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (ℤ𝐾))
4329adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝐾 ∈ (ℤ𝑀))
44 uztrn 9503 . . . . . . . . 9 ((𝑤 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑤 ∈ (ℤ𝑀))
4542, 43, 44syl2anc 409 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (ℤ𝑀))
46 seq3fveq2.f . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4746adantlr 474 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4833adantlr 474 . . . . . . . 8 (((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4945, 47, 48seq3p1 10418 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = ((seq𝑀( + , 𝐹)‘𝑤) + (𝐹‘(𝑤 + 1))))
5032adantlr 474 . . . . . . . . 9 (((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
5142, 50, 48seq3p1 10418 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑤 + 1)) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐺‘(𝑤 + 1))))
52 fveq2 5496 . . . . . . . . . . 11 (𝑘 = (𝑤 + 1) → (𝐹𝑘) = (𝐹‘(𝑤 + 1)))
53 fveq2 5496 . . . . . . . . . . 11 (𝑘 = (𝑤 + 1) → (𝐺𝑘) = (𝐺‘(𝑤 + 1)))
5452, 53eqeq12d 2185 . . . . . . . . . 10 (𝑘 = (𝑤 + 1) → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1))))
55 seq3fveq2.4 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
5655ralrimiva 2543 . . . . . . . . . . 11 (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
5756adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹𝑘) = (𝐺𝑘))
58 eluzp1p1 9512 . . . . . . . . . . . 12 (𝑤 ∈ (ℤ𝐾) → (𝑤 + 1) ∈ (ℤ‘(𝐾 + 1)))
5958ad2antrl 487 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝑤 + 1) ∈ (ℤ‘(𝐾 + 1)))
60 elfzuz3 9978 . . . . . . . . . . . 12 ((𝑤 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ‘(𝑤 + 1)))
6160ad2antll 488 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ‘(𝑤 + 1)))
62 elfzuzb 9975 . . . . . . . . . . 11 ((𝑤 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑤 + 1) ∈ (ℤ‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ‘(𝑤 + 1))))
6359, 61, 62sylanbrc 415 . . . . . . . . . 10 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝑤 + 1) ∈ ((𝐾 + 1)...𝑁))
6454, 57, 63rspcdva 2839 . . . . . . . . 9 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1)))
6564oveq2d 5869 . . . . . . . 8 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐺‘(𝑤 + 1))))
6651, 65eqtr4d 2206 . . . . . . 7 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑤 + 1)) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1))))
6749, 66eqeq12d 2185 . . . . . 6 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1)) ↔ ((seq𝑀( + , 𝐹)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺)‘𝑤) + (𝐹‘(𝑤 + 1)))))
6841, 67syl5ibr 155 . . . . 5 ((𝜑 ∧ (𝑤 ∈ (ℤ𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))))
6940, 68animpimp2impd 554 . . . 4 (𝑤 ∈ (ℤ𝐾) → ((𝜑 → (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑤) = (seq𝐾( + , 𝐺)‘𝑤))) → (𝜑 → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺)‘(𝑤 + 1))))))
709, 15, 21, 27, 36, 69uzind4 9547 . . 3 (𝑁 ∈ (ℤ𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))
711, 70mpcom 36 . 2 (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))
723, 71mpd 13 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  cfv 5198  (class class class)co 5853  1c1 7775   + caddc 7777  cz 9212  cuz 9487  ...cfz 9965  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-seqfrec 10402
This theorem is referenced by:  seq3feq2  10426  seq3fveq  10427
  Copyright terms: Public domain W3C validator