ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3shft2 GIF version

Theorem seq3shft2 10277
Description: Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.) (Revised by Jim Kingdon, 7-Apr-2023.)
Hypotheses
Ref Expression
seq3shft2.1 (𝜑𝑁 ∈ (ℤ𝑀))
seq3shft2.2 (𝜑𝐾 ∈ ℤ)
seq3shft2.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
seq3shft2.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seq3shft2.g ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝐺𝑥) ∈ 𝑆)
seq3shft2.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seq3shft2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
Distinct variable groups:   𝑥, + ,𝑦   𝑘,𝐹,𝑥   𝑦,𝐹   𝑘,𝐺,𝑥   𝑦,𝐺   𝑘,𝐾,𝑥   𝑦,𝐾   𝑘,𝑀,𝑥   𝑦,𝑀   𝑘,𝑁,𝑥   𝑦,𝑁   𝑥,𝑆,𝑦   𝜑,𝑘,𝑥   𝜑,𝑦
Allowed substitution hints:   + (𝑘)   𝑆(𝑘)

Proof of Theorem seq3shft2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 seq3shft2.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 9843 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2203 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 5429 . . . . . . 7 (𝑥 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑀))
6 fvoveq1 5805 . . . . . . 7 (𝑥 = 𝑀 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))
75, 6eqeq12d 2155 . . . . . 6 (𝑥 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾))))
84, 7imbi12d 233 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))))
98imbi2d 229 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾))))))
10 eleq1 2203 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
11 fveq2 5429 . . . . . . 7 (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛))
12 fvoveq1 5805 . . . . . . 7 (𝑥 = 𝑛 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))
1311, 12eqeq12d 2155 . . . . . 6 (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))))
1410, 13imbi12d 233 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))))
1514imbi2d 229 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))))))
16 eleq1 2203 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
17 fveq2 5429 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1)))
18 fvoveq1 5805 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))
1917, 18eqeq12d 2155 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))
2016, 19imbi12d 233 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)))))
2120imbi2d 229 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))))
22 eleq1 2203 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
23 fveq2 5429 . . . . . . 7 (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁))
24 fvoveq1 5805 . . . . . . 7 (𝑥 = 𝑁 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
2523, 24eqeq12d 2155 . . . . . 6 (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))
2622, 25imbi12d 233 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾))) ↔ (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))))
2726imbi2d 229 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑥 + 𝐾)))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))))
28 fveq2 5429 . . . . . . . 8 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
29 fvoveq1 5805 . . . . . . . 8 (𝑘 = 𝑀 → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
3028, 29eqeq12d 2155 . . . . . . 7 (𝑘 = 𝑀 → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾))))
31 seq3shft2.3 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
3231ralrimiva 2508 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
33 eluzfz1 9842 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
341, 33syl 14 . . . . . . 7 (𝜑𝑀 ∈ (𝑀...𝑁))
3530, 32, 34rspcdva 2798 . . . . . 6 (𝜑 → (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾)))
36 eluzel2 9355 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
371, 36syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
38 seq3shft2.f . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
39 seq3shft2.pl . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4037, 38, 39seq3-1 10264 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
41 seq3shft2.2 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
4237, 41zaddcld 9201 . . . . . . 7 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
43 seq3shft2.g . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝐺𝑥) ∈ 𝑆)
4442, 43, 39seq3-1 10264 . . . . . 6 (𝜑 → (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
4535, 40, 443eqtr4d 2183 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))
4645a1i13 24 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑀 + 𝐾)))))
47 peano2fzr 9848 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
4847adantl 275 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
4948expr 373 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
5049imim1d 75 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))))
51 oveq1 5789 . . . . . 6 ((seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))
52 simprl 521 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ𝑀))
5338adantlr 469 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
5439adantlr 469 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
5552, 53, 54seq3p1 10266 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
5641adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝐾 ∈ ℤ)
57 eluzadd 9378 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
5852, 56, 57syl2anc 409 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
5943adantlr 469 . . . . . . . . 9 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝐺𝑥) ∈ 𝑆)
6058, 59, 54seq3p1 10266 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
61 eluzelz 9359 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
6252, 61syl 14 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ)
6362zcnd 9198 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℂ)
64 1cnd 7806 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 1 ∈ ℂ)
6556zcnd 9198 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝐾 ∈ ℂ)
6663, 64, 65add32d 7954 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
6766fveq2d 5433 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 𝐾) + 1)))
68 fveq2 5429 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
69 fvoveq1 5805 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘((𝑛 + 1) + 𝐾)))
7068, 69eqeq12d 2155 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾))))
7132adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
72 simprr 522 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
7370, 71, 72rspcdva 2798 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾)))
7466fveq2d 5433 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐺‘((𝑛 + 1) + 𝐾)) = (𝐺‘((𝑛 + 𝐾) + 1)))
7573, 74eqtrd 2173 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 𝐾) + 1)))
7675oveq2d 5798 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
7760, 67, 763eqtr4d 2183 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))
7855, 77eqeq12d 2155 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾)) ↔ ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1)))))
7951, 78syl5ibr 155 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))
8050, 79animpimp2impd 549 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑛 + 𝐾)))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺)‘((𝑛 + 1) + 𝐾))))))
819, 15, 21, 27, 46, 80uzind4 9410 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))))
821, 81mpcom 36 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾))))
833, 82mpd 13 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺)‘(𝑁 + 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  wral 2417  cfv 5131  (class class class)co 5782  1c1 7645   + caddc 7647  cz 9078  cuz 9350  ...cfz 9821  seqcseq 10249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822  df-seqfrec 10250
This theorem is referenced by:  seq3f1olemqsumkj  10302  seq3shft  10642
  Copyright terms: Public domain W3C validator