ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d GIF version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here 𝜑 would be replaced with a conjunction (wa 104) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1 (𝜑𝜓)
Assertion
Ref Expression
a1d (𝜑 → (𝜒𝜓))

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2 (𝜑𝜓)
2 ax-1 6 . 2 (𝜓 → (𝜒𝜓))
31, 2syl 14 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  128  imbi2d  230  adantr  276  jctild  316  jctird  317  pm3.4  333  anbi2d  464  anbi1d  465  conax1k  655  mtod  664  pm2.76  809  dcim  842  condcOLD  855  pm5.18dc  884  pm2.54dc  892  pm2.85dc  906  dcor  937  anordc  958  xor3dc  1398  biassdc  1406  syl6ci  1456  hbequid  1527  19.30dc  1641  equsalh  1740  equvini  1772  nfsbxyt  1962  modc  2088  euan  2101  moexexdc  2129  nebidc  2447  rgen2a  2551  ralrimivw  2571  reximdv  2598  rexlimdvw  2618  r19.32r  2643  reuind  2969  rabxmdc  3483  rexn0  3550  exmidn0m  4235  regexmidlem1  4570  finds1  4639  nn0suc  4641  nndceq0  4655  ssrel2  4754  poltletr  5071  fmptco  5731  nnsucsssuc  6559  map1  6880  1domsn  6887  pw2f1odclem  6904  fopwdom  6906  mapxpen  6918  fidifsnen  6940  eldju2ndl  7147  eldju2ndr  7148  difinfsnlem  7174  finomni  7215  fodjuomnilemdc  7219  pr2ne  7271  exmidfodomrlemim  7280  indpi  7426  nnindnn  7977  nnind  9023  nn1m1nn  9025  nn1gt1  9041  nn0n0n1ge2b  9422  nn0le2is012  9425  xrltnsym  9885  xrlttr  9887  xrltso  9888  xltnegi  9927  xsubge0  9973  fzospliti  10269  elfzonlteqm1  10303  qbtwnxr  10364  modfzo0difsn  10504  seqfveq2g  10586  monoord  10594  seqf1oglem1  10628  seqf1oglem2  10629  seqhomog  10639  seq3coll  10951  rexuz3  11172  rexanuz2  11173  fprodfac  11797  dvdsaddre2b  12023  dvdsle  12026  dvdsabseq  12029  nno  12088  nn0seqcvgd  12234  lcmdvds  12272  divgcdcoprm0  12294  exprmfct  12331  rpexp1i  12347  phibndlem  12409  prm23lt5  12457  pc2dvds  12524  pcz  12526  pcadd  12534  pcmptcl  12536  oddprmdvds  12548  4sqlem11  12595  ennnfoneleminc  12653  dfgrp3me  13302  epttop  14410  xblss2ps  14724  xblss2  14725  blfps  14729  blf  14730  metrest  14826  cncfmptc  14916  dvmptfsum  15045  perfectlem2  15320  zabsle1  15324  lgsne0  15363  gausslemma2dlem0f  15379  gausslemma2dlem1a  15383  lgsquad2lem2  15407  lgsquad3  15409  2lgslem1a1  15411  2lgslem3  15426  2lgs  15429  2lgsoddprm  15438  2sqlem10  15450  bj-nn0suc0  15680  exmidsbthrlem  15753
  Copyright terms: Public domain W3C validator