ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d GIF version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here 𝜑 would be replaced with a conjunction (wa 104) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1 (𝜑𝜓)
Assertion
Ref Expression
a1d (𝜑 → (𝜒𝜓))

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2 (𝜑𝜓)
2 ax-1 6 . 2 (𝜓 → (𝜒𝜓))
31, 2syl 14 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  128  imbi2d  230  adantr  276  jctild  316  jctird  317  pm3.4  333  anbi2d  464  anbi1d  465  conax1k  655  mtod  664  pm2.76  809  dcim  842  condcOLD  855  pm5.18dc  884  pm2.54dc  892  pm2.85dc  906  dcor  937  anordc  958  xor3dc  1398  biassdc  1406  syl6ci  1456  hbequid  1527  19.30dc  1641  equsalh  1740  equvini  1772  nfsbxyt  1962  modc  2088  euan  2101  moexexdc  2129  nebidc  2447  rgen2a  2551  ralrimivw  2571  reximdv  2598  rexlimdvw  2618  r19.32r  2643  reuind  2969  rabxmdc  3483  rexn0  3550  exmidn0m  4235  regexmidlem1  4570  finds1  4639  nn0suc  4641  nndceq0  4655  ssrel2  4754  poltletr  5071  fmptco  5731  nnsucsssuc  6559  map1  6880  1domsn  6887  pw2f1odclem  6904  fopwdom  6906  mapxpen  6918  fidifsnen  6940  eldju2ndl  7147  eldju2ndr  7148  difinfsnlem  7174  finomni  7215  fodjuomnilemdc  7219  pr2ne  7273  exmidfodomrlemim  7282  indpi  7428  nnindnn  7979  nnind  9025  nn1m1nn  9027  nn1gt1  9043  nn0n0n1ge2b  9424  nn0le2is012  9427  xrltnsym  9887  xrlttr  9889  xrltso  9890  xltnegi  9929  xsubge0  9975  fzospliti  10271  elfzonlteqm1  10305  qbtwnxr  10366  modfzo0difsn  10506  seqfveq2g  10588  monoord  10596  seqf1oglem1  10630  seqf1oglem2  10631  seqhomog  10641  seq3coll  10953  rexuz3  11174  rexanuz2  11175  fprodfac  11799  dvdsaddre2b  12025  dvdsle  12028  dvdsabseq  12031  nno  12090  nn0seqcvgd  12236  lcmdvds  12274  divgcdcoprm0  12296  exprmfct  12333  rpexp1i  12349  phibndlem  12411  prm23lt5  12459  pc2dvds  12526  pcz  12528  pcadd  12536  pcmptcl  12538  oddprmdvds  12550  4sqlem11  12597  ennnfoneleminc  12655  dfgrp3me  13304  mplsubgfilemm  14332  epttop  14434  xblss2ps  14748  xblss2  14749  blfps  14753  blf  14754  metrest  14850  cncfmptc  14940  dvmptfsum  15069  perfectlem2  15344  zabsle1  15348  lgsne0  15387  gausslemma2dlem0f  15403  gausslemma2dlem1a  15407  lgsquad2lem2  15431  lgsquad3  15433  2lgslem1a1  15435  2lgslem3  15450  2lgs  15453  2lgsoddprm  15462  2sqlem10  15474  bj-nn0suc0  15704  exmidsbthrlem  15779
  Copyright terms: Public domain W3C validator