ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d GIF version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here 𝜑 would be replaced with a conjunction (wa 104) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1 (𝜑𝜓)
Assertion
Ref Expression
a1d (𝜑 → (𝜒𝜓))

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2 (𝜑𝜓)
2 ax-1 6 . 2 (𝜓 → (𝜒𝜓))
31, 2syl 14 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  128  imbi2d  230  adantr  276  jctild  316  jctird  317  pm3.4  333  anbi2d  464  anbi1d  465  conax1k  658  mtod  667  pm2.76  812  dcim  845  condcOLD  858  pm5.18dc  887  pm2.54dc  895  pm2.85dc  909  dcor  940  anordc  961  xor3dc  1409  biassdc  1417  syl6ci  1468  hbequid  1539  19.30dc  1653  equsalh  1752  equvini  1784  nfsbxyt  1974  modc  2101  euan  2114  moexexdc  2142  nebidc  2460  rgen2a  2564  ralrimivw  2584  reximdv  2611  rexlimdvw  2632  r19.32r  2657  reuind  2988  rabxmdc  3503  rexn0  3570  ssprsseq  3809  exmidn0m  4264  regexmidlem1  4602  finds1  4671  nn0suc  4673  nndceq0  4687  ssrel2  4786  poltletr  5105  fmptco  5774  nnsucsssuc  6608  map1  6935  1domsn  6946  pw2f1odclem  6963  fopwdom  6965  mapxpen  6977  fidifsnen  7000  eldju2ndl  7207  eldju2ndr  7208  difinfsnlem  7234  finomni  7275  fodjuomnilemdc  7279  pr2ne  7333  exmidfodomrlemim  7347  indpi  7497  nnindnn  8048  nnind  9094  nn1m1nn  9096  nn1gt1  9112  nn0n0n1ge2b  9494  nn0le2is012  9497  xrltnsym  9957  xrlttr  9959  xrltso  9960  xltnegi  9999  xsubge0  10045  fzospliti  10342  elfzonlteqm1  10383  qbtwnxr  10444  modfzo0difsn  10584  seqfveq2g  10666  monoord  10674  seqf1oglem1  10708  seqf1oglem2  10709  seqhomog  10719  seq3coll  11031  swrdswrd  11203  pfxccatin12lem3  11230  pfxccat3  11232  rexuz3  11467  rexanuz2  11468  fprodfac  12092  dvdsaddre2b  12318  dvdsle  12321  dvdsabseq  12324  nno  12383  nn0seqcvgd  12529  lcmdvds  12567  divgcdcoprm0  12589  exprmfct  12626  rpexp1i  12642  phibndlem  12704  prm23lt5  12752  pc2dvds  12819  pcz  12821  pcadd  12829  pcmptcl  12831  oddprmdvds  12843  4sqlem11  12890  ennnfoneleminc  12948  dfgrp3me  13599  mplsubgfilemm  14627  epttop  14729  xblss2ps  15043  xblss2  15044  blfps  15048  blf  15049  metrest  15145  cncfmptc  15235  dvmptfsum  15364  perfectlem2  15639  zabsle1  15643  lgsne0  15682  gausslemma2dlem0f  15698  gausslemma2dlem1a  15702  lgsquad2lem2  15726  lgsquad3  15728  2lgslem1a1  15730  2lgslem3  15745  2lgs  15748  2lgsoddprm  15757  2sqlem10  15769  ausgrusgrben  15931  bj-nn0suc0  16223  exmidsbthrlem  16301
  Copyright terms: Public domain W3C validator