ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d GIF version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here 𝜑 would be replaced with a conjunction (wa 103) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1 (𝜑𝜓)
Assertion
Ref Expression
a1d (𝜑 → (𝜒𝜓))

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2 (𝜑𝜓)
2 ax-1 6 . 2 (𝜓 → (𝜒𝜓))
31, 2syl 14 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  127  imbi2d  229  adantr  274  jctild  314  jctird  315  pm3.4  331  anbi2d  460  anbi1d  461  conax1k  644  mtod  653  pm2.76  798  dcim  831  condcOLD  844  pm5.18dc  873  pm2.54dc  881  pm2.85dc  895  dcor  925  anordc  946  xor3dc  1377  biassdc  1385  syl6ci  1433  hbequid  1501  19.30dc  1615  equsalh  1714  equvini  1746  nfsbxyt  1931  modc  2057  euan  2070  moexexdc  2098  nebidc  2416  rgen2a  2520  ralrimivw  2540  reximdv  2567  rexlimdvw  2587  r19.32r  2612  reuind  2931  rabxmdc  3440  rexn0  3507  exmidn0m  4180  regexmidlem1  4510  finds1  4579  nn0suc  4581  nndceq0  4595  ssrel2  4694  poltletr  5004  fmptco  5651  nnsucsssuc  6460  map1  6778  1domsn  6785  fopwdom  6802  mapxpen  6814  fidifsnen  6836  eldju2ndl  7037  eldju2ndr  7038  difinfsnlem  7064  finomni  7104  fodjuomnilemdc  7108  pr2ne  7148  exmidfodomrlemim  7157  indpi  7283  nnindnn  7834  nnind  8873  nn1m1nn  8875  nn1gt1  8891  nn0n0n1ge2b  9270  nn0le2is012  9273  xrltnsym  9729  xrlttr  9731  xrltso  9732  xltnegi  9771  xsubge0  9817  fzospliti  10111  elfzonlteqm1  10145  qbtwnxr  10193  modfzo0difsn  10330  monoord  10411  seq3coll  10755  rexuz3  10932  rexanuz2  10933  fprodfac  11556  dvdsle  11782  dvdsabseq  11785  nno  11843  nn0seqcvgd  11973  lcmdvds  12011  divgcdcoprm0  12033  exprmfct  12070  rpexp1i  12086  phibndlem  12148  prm23lt5  12195  pc2dvds  12261  pcz  12263  pcadd  12271  pcmptcl  12272  oddprmdvds  12284  ennnfoneleminc  12344  epttop  12730  xblss2ps  13044  xblss2  13045  blfps  13049  blf  13050  metrest  13146  cncfmptc  13222  zabsle1  13540  lgsne0  13579  2sqlem10  13601  bj-nn0suc0  13832  exmidsbthrlem  13901
  Copyright terms: Public domain W3C validator