ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d GIF version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here 𝜑 would be replaced with a conjunction (wa 104) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1 (𝜑𝜓)
Assertion
Ref Expression
a1d (𝜑 → (𝜒𝜓))

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2 (𝜑𝜓)
2 ax-1 6 . 2 (𝜓 → (𝜒𝜓))
31, 2syl 14 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  128  imbi2d  230  adantr  276  jctild  316  jctird  317  pm3.4  333  anbi2d  464  anbi1d  465  conax1k  656  mtod  665  pm2.76  810  dcim  843  condcOLD  856  pm5.18dc  885  pm2.54dc  893  pm2.85dc  907  dcor  938  anordc  959  xor3dc  1407  biassdc  1415  syl6ci  1466  hbequid  1537  19.30dc  1651  equsalh  1750  equvini  1782  nfsbxyt  1972  modc  2098  euan  2111  moexexdc  2139  nebidc  2457  rgen2a  2561  ralrimivw  2581  reximdv  2608  rexlimdvw  2628  r19.32r  2653  reuind  2979  rabxmdc  3493  rexn0  3560  exmidn0m  4249  regexmidlem1  4585  finds1  4654  nn0suc  4656  nndceq0  4670  ssrel2  4769  poltletr  5088  fmptco  5753  nnsucsssuc  6585  map1  6911  1domsn  6921  pw2f1odclem  6938  fopwdom  6940  mapxpen  6952  fidifsnen  6974  eldju2ndl  7181  eldju2ndr  7182  difinfsnlem  7208  finomni  7249  fodjuomnilemdc  7253  pr2ne  7307  exmidfodomrlemim  7316  indpi  7462  nnindnn  8013  nnind  9059  nn1m1nn  9061  nn1gt1  9077  nn0n0n1ge2b  9459  nn0le2is012  9462  xrltnsym  9922  xrlttr  9924  xrltso  9925  xltnegi  9964  xsubge0  10010  fzospliti  10307  elfzonlteqm1  10346  qbtwnxr  10407  modfzo0difsn  10547  seqfveq2g  10629  monoord  10637  seqf1oglem1  10671  seqf1oglem2  10672  seqhomog  10682  seq3coll  10994  swrdswrd  11164  rexuz3  11345  rexanuz2  11346  fprodfac  11970  dvdsaddre2b  12196  dvdsle  12199  dvdsabseq  12202  nno  12261  nn0seqcvgd  12407  lcmdvds  12445  divgcdcoprm0  12467  exprmfct  12504  rpexp1i  12520  phibndlem  12582  prm23lt5  12630  pc2dvds  12697  pcz  12699  pcadd  12707  pcmptcl  12709  oddprmdvds  12721  4sqlem11  12768  ennnfoneleminc  12826  dfgrp3me  13476  mplsubgfilemm  14504  epttop  14606  xblss2ps  14920  xblss2  14921  blfps  14925  blf  14926  metrest  15022  cncfmptc  15112  dvmptfsum  15241  perfectlem2  15516  zabsle1  15520  lgsne0  15559  gausslemma2dlem0f  15575  gausslemma2dlem1a  15579  lgsquad2lem2  15603  lgsquad3  15605  2lgslem1a1  15607  2lgslem3  15622  2lgs  15625  2lgsoddprm  15634  2sqlem10  15646  bj-nn0suc0  15960  exmidsbthrlem  16035
  Copyright terms: Public domain W3C validator