ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a1d GIF version

Theorem a1d 22
Description: Deduction introducing an embedded antecedent. (The proof was revised by Stefan Allan, 20-Mar-2006.)

Naming convention: We often call a theorem a "deduction" and suffix its label with "d" whenever the hypotheses and conclusion are each prefixed with the same antecedent. This allows us to use the theorem in places where (in traditional textbook formalizations) the standard Deduction Theorem would be used; here 𝜑 would be replaced with a conjunction (wa 104) of the hypotheses of the would-be deduction. By contrast, we tend to call the simpler version with no common antecedent an "inference" and suffix its label with "i"; compare Theorem a1i 9. Finally, a "theorem" would be the form with no hypotheses; in this case the "theorem" form would be the original axiom ax-1 6. We usually show the theorem form without a suffix on its label (e.g., pm2.43 53 versus pm2.43i 49 versus pm2.43d 50). (Contributed by NM, 5-Aug-1993.) (Revised by NM, 20-Mar-2006.)

Hypothesis
Ref Expression
a1d.1 (𝜑𝜓)
Assertion
Ref Expression
a1d (𝜑 → (𝜒𝜓))

Proof of Theorem a1d
StepHypRef Expression
1 a1d.1 . 2 (𝜑𝜓)
2 ax-1 6 . 2 (𝜓 → (𝜒𝜓))
31, 2syl 14 1 (𝜑 → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2a1d  23  a1i13  24  2a1i  27  syl5com  29  mpid  42  syld  45  imim2d  54  syl5d  68  syl6d  70  impbid21d  128  imbi2d  230  adantr  276  jctild  316  jctird  317  pm3.4  333  anbi2d  464  anbi1d  465  conax1k  658  mtod  667  pm2.76  813  dcim  846  condcOLD  859  pm5.18dc  888  pm2.54dc  896  pm2.85dc  910  dcor  941  anordc  962  xor3dc  1429  biassdc  1437  syl6ci  1488  hbequid  1559  19.30dc  1673  equsalh  1772  equvini  1804  nfsbxyt  1994  modc  2121  euan  2134  moexexdc  2162  nebidc  2480  rgen2a  2584  ralrimivw  2604  reximdv  2631  rexlimdvw  2652  r19.32r  2677  reuind  3008  rabxmdc  3523  rexn0  3590  ifpprsnssdc  3774  ssprsseq  3830  exmidn0m  4285  regexmidlem1  4625  finds1  4694  nn0suc  4696  nndceq0  4710  ssrel2  4809  poltletr  5129  fmptco  5803  nnsucsssuc  6646  map1  6973  1domsn  6984  pw2f1odclem  7003  fopwdom  7005  mapxpen  7017  fidifsnen  7040  eldju2ndl  7247  eldju2ndr  7248  difinfsnlem  7274  finomni  7315  fodjuomnilemdc  7319  pr2ne  7373  exmidfodomrlemim  7387  indpi  7537  nnindnn  8088  nnind  9134  nn1m1nn  9136  nn1gt1  9152  nn0n0n1ge2b  9534  nn0le2is012  9537  xrltnsym  9997  xrlttr  9999  xrltso  10000  xltnegi  10039  xsubge0  10085  fzospliti  10382  elfzonlteqm1  10424  qbtwnxr  10485  modfzo0difsn  10625  seqfveq2g  10707  monoord  10715  seqf1oglem1  10749  seqf1oglem2  10750  seqhomog  10760  seq3coll  11072  swrdswrd  11245  pfxccatin12lem3  11272  pfxccat3  11274  rexuz3  11509  rexanuz2  11510  fprodfac  12134  dvdsaddre2b  12360  dvdsle  12363  dvdsabseq  12366  nno  12425  nn0seqcvgd  12571  lcmdvds  12609  divgcdcoprm0  12631  exprmfct  12668  rpexp1i  12684  phibndlem  12746  prm23lt5  12794  pc2dvds  12861  pcz  12863  pcadd  12871  pcmptcl  12873  oddprmdvds  12885  4sqlem11  12932  ennnfoneleminc  12990  dfgrp3me  13641  mplsubgfilemm  14670  epttop  14772  xblss2ps  15086  xblss2  15087  blfps  15091  blf  15092  metrest  15188  cncfmptc  15278  dvmptfsum  15407  perfectlem2  15682  zabsle1  15686  lgsne0  15725  gausslemma2dlem0f  15741  gausslemma2dlem1a  15745  lgsquad2lem2  15769  lgsquad3  15771  2lgslem1a1  15773  2lgslem3  15788  2lgs  15791  2lgsoddprm  15800  2sqlem10  15812  ausgrusgrben  15974  upgriswlkdc  16081  bj-nn0suc0  16337  exmidsbthrlem  16420
  Copyright terms: Public domain W3C validator