| Step | Hyp | Ref
 | Expression | 
| 1 |   | xpeq1 4677 | 
. . . . 5
⊢ (𝑥 = ∅ → (𝑥 × 𝐵) = (∅ × 𝐵)) | 
| 2 | 1 | eleq1d 2265 | 
. . . 4
⊢ (𝑥 = ∅ → ((𝑥 × 𝐵) ∈ Fin ↔ (∅ × 𝐵) ∈ Fin)) | 
| 3 | 2 | imbi2d 230 | 
. . 3
⊢ (𝑥 = ∅ → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (∅ × 𝐵) ∈ Fin))) | 
| 4 |   | xpeq1 4677 | 
. . . . 5
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝑥 × 𝐵) = ((𝑦 ∖ {𝑧}) × 𝐵)) | 
| 5 | 4 | eleq1d 2265 | 
. . . 4
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → ((𝑥 × 𝐵) ∈ Fin ↔ ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin)) | 
| 6 | 5 | imbi2d 230 | 
. . 3
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin))) | 
| 7 |   | xpeq1 4677 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 × 𝐵) = (𝑦 × 𝐵)) | 
| 8 | 7 | eleq1d 2265 | 
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 × 𝐵) ∈ Fin ↔ (𝑦 × 𝐵) ∈ Fin)) | 
| 9 | 8 | imbi2d 230 | 
. . 3
⊢ (𝑥 = 𝑦 → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (𝑦 × 𝐵) ∈ Fin))) | 
| 10 |   | xpeq1 4677 | 
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 × 𝐵) = (𝐴 × 𝐵)) | 
| 11 | 10 | eleq1d 2265 | 
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑥 × 𝐵) ∈ Fin ↔ (𝐴 × 𝐵) ∈ Fin)) | 
| 12 | 11 | imbi2d 230 | 
. . 3
⊢ (𝑥 = 𝐴 → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (𝐴 × 𝐵) ∈ Fin))) | 
| 13 |   | 0xp 4743 | 
. . . . 5
⊢ (∅
× 𝐵) =
∅ | 
| 14 |   | 0fin 6945 | 
. . . . 5
⊢ ∅
∈ Fin | 
| 15 | 13, 14 | eqeltri 2269 | 
. . . 4
⊢ (∅
× 𝐵) ∈
Fin | 
| 16 | 15 | a1i 9 | 
. . 3
⊢ (𝐵 ∈ Fin → (∅
× 𝐵) ∈
Fin) | 
| 17 |   | xpeq1 4677 | 
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝑦 × 𝐵) = (∅ × 𝐵)) | 
| 18 | 17, 15 | eqeltrdi 2287 | 
. . . . . . 7
⊢ (𝑦 = ∅ → (𝑦 × 𝐵) ∈ Fin) | 
| 19 | 18 | a1i13 24 | 
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑦 = ∅ → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) | 
| 20 |   | sneq 3633 | 
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑤 → {𝑧} = {𝑤}) | 
| 21 | 20 | difeq2d 3281 | 
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → (𝑦 ∖ {𝑧}) = (𝑦 ∖ {𝑤})) | 
| 22 | 21 | xpeq1d 4686 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → ((𝑦 ∖ {𝑧}) × 𝐵) = ((𝑦 ∖ {𝑤}) × 𝐵)) | 
| 23 | 22 | eleq1d 2265 | 
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → (((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin ↔ ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)) | 
| 24 | 23 | imbi2d 230 | 
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))) | 
| 25 | 24 | rspcv 2864 | 
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑦 → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))) | 
| 26 | 25 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))) | 
| 27 |   | pm2.27 40 | 
. . . . . . . . . 10
⊢ (𝐵 ∈ Fin → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin) → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)) | 
| 28 | 27 | ad2antlr 489 | 
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin) → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)) | 
| 29 |   | vex 2766 | 
. . . . . . . . . . . . . . 15
⊢ 𝑤 ∈ V | 
| 30 | 29 | snex 4218 | 
. . . . . . . . . . . . . 14
⊢ {𝑤} ∈ V | 
| 31 |   | xpexg 4777 | 
. . . . . . . . . . . . . 14
⊢ (({𝑤} ∈ V ∧ 𝐵 ∈ Fin) → ({𝑤} × 𝐵) ∈ V) | 
| 32 | 30, 31 | mpan 424 | 
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ Fin → ({𝑤} × 𝐵) ∈ V) | 
| 33 |   | id 19 | 
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ Fin → 𝐵 ∈ Fin) | 
| 34 |   | 2ndconst 6280 | 
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ V → (2nd
↾ ({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto→𝐵) | 
| 35 | 29, 34 | mp1i 10 | 
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ Fin →
(2nd ↾ ({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto→𝐵) | 
| 36 |   | f1oen2g 6814 | 
. . . . . . . . . . . . 13
⊢ ((({𝑤} × 𝐵) ∈ V ∧ 𝐵 ∈ Fin ∧ (2nd ↾
({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto→𝐵) → ({𝑤} × 𝐵) ≈ 𝐵) | 
| 37 | 32, 33, 35, 36 | syl3anc 1249 | 
. . . . . . . . . . . 12
⊢ (𝐵 ∈ Fin → ({𝑤} × 𝐵) ≈ 𝐵) | 
| 38 |   | enfii 6935 | 
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ Fin ∧ ({𝑤} × 𝐵) ≈ 𝐵) → ({𝑤} × 𝐵) ∈ Fin) | 
| 39 | 37, 38 | mpdan 421 | 
. . . . . . . . . . 11
⊢ (𝐵 ∈ Fin → ({𝑤} × 𝐵) ∈ Fin) | 
| 40 | 39 | ad2antlr 489 | 
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ({𝑤} × 𝐵) ∈ Fin) | 
| 41 |   | incom 3355 | 
. . . . . . . . . . . . . 14
⊢ ({𝑤} ∩ (𝑦 ∖ {𝑤})) = ((𝑦 ∖ {𝑤}) ∩ {𝑤}) | 
| 42 |   | disjdif 3523 | 
. . . . . . . . . . . . . 14
⊢ ({𝑤} ∩ (𝑦 ∖ {𝑤})) = ∅ | 
| 43 | 41, 42 | eqtr3i 2219 | 
. . . . . . . . . . . . 13
⊢ ((𝑦 ∖ {𝑤}) ∩ {𝑤}) = ∅ | 
| 44 |   | xpdisj1 5094 | 
. . . . . . . . . . . . 13
⊢ (((𝑦 ∖ {𝑤}) ∩ {𝑤}) = ∅ → (((𝑦 ∖ {𝑤}) × 𝐵) ∩ ({𝑤} × 𝐵)) = ∅) | 
| 45 | 43, 44 | ax-mp 5 | 
. . . . . . . . . . . 12
⊢ (((𝑦 ∖ {𝑤}) × 𝐵) ∩ ({𝑤} × 𝐵)) = ∅ | 
| 46 |   | unfidisj 6983 | 
. . . . . . . . . . . 12
⊢ ((((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin ∧ ({𝑤} × 𝐵) ∈ Fin ∧ (((𝑦 ∖ {𝑤}) × 𝐵) ∩ ({𝑤} × 𝐵)) = ∅) → (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin) | 
| 47 | 45, 46 | mp3an3 1337 | 
. . . . . . . . . . 11
⊢ ((((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin ∧ ({𝑤} × 𝐵) ∈ Fin) → (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin) | 
| 48 |   | xpundir 4720 | 
. . . . . . . . . . . . 13
⊢ (((𝑦 ∖ {𝑤}) ∪ {𝑤}) × 𝐵) = (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) | 
| 49 |   | fidifsnid 6932 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ Fin ∧ 𝑤 ∈ 𝑦) → ((𝑦 ∖ {𝑤}) ∪ {𝑤}) = 𝑦) | 
| 50 | 49 | adantlr 477 | 
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((𝑦 ∖ {𝑤}) ∪ {𝑤}) = 𝑦) | 
| 51 | 50 | xpeq1d 4686 | 
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (((𝑦 ∖ {𝑤}) ∪ {𝑤}) × 𝐵) = (𝑦 × 𝐵)) | 
| 52 | 48, 51 | eqtr3id 2243 | 
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) = (𝑦 × 𝐵)) | 
| 53 | 52 | eleq1d 2265 | 
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin ↔ (𝑦 × 𝐵) ∈ Fin)) | 
| 54 | 47, 53 | imbitrid 154 | 
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin ∧ ({𝑤} × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) | 
| 55 | 40, 54 | mpan2d 428 | 
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin → (𝑦 × 𝐵) ∈ Fin)) | 
| 56 | 26, 28, 55 | 3syld 57 | 
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) | 
| 57 | 56 | ex 115 | 
. . . . . . 7
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑤 ∈ 𝑦 → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) | 
| 58 | 57 | exlimdv 1833 | 
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) →
(∃𝑤 𝑤 ∈ 𝑦 → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) | 
| 59 |   | fin0or 6947 | 
. . . . . . 7
⊢ (𝑦 ∈ Fin → (𝑦 = ∅ ∨ ∃𝑤 𝑤 ∈ 𝑦)) | 
| 60 | 59 | adantr 276 | 
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑦 = ∅ ∨ ∃𝑤 𝑤 ∈ 𝑦)) | 
| 61 | 19, 58, 60 | mpjaod 719 | 
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) →
(∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) | 
| 62 | 61 | ex 115 | 
. . . 4
⊢ (𝑦 ∈ Fin → (𝐵 ∈ Fin →
(∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) | 
| 63 | 62 | com23 78 | 
. . 3
⊢ (𝑦 ∈ Fin →
(∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → (𝑦 × 𝐵) ∈ Fin))) | 
| 64 | 3, 6, 9, 12, 16, 63 | findcard 6949 | 
. 2
⊢ (𝐴 ∈ Fin → (𝐵 ∈ Fin → (𝐴 × 𝐵) ∈ Fin)) | 
| 65 | 64 | imp 124 | 
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |