Step | Hyp | Ref
| Expression |
1 | | xpeq1 4618 |
. . . . 5
⊢ (𝑥 = ∅ → (𝑥 × 𝐵) = (∅ × 𝐵)) |
2 | 1 | eleq1d 2235 |
. . . 4
⊢ (𝑥 = ∅ → ((𝑥 × 𝐵) ∈ Fin ↔ (∅ × 𝐵) ∈ Fin)) |
3 | 2 | imbi2d 229 |
. . 3
⊢ (𝑥 = ∅ → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (∅ × 𝐵) ∈ Fin))) |
4 | | xpeq1 4618 |
. . . . 5
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝑥 × 𝐵) = ((𝑦 ∖ {𝑧}) × 𝐵)) |
5 | 4 | eleq1d 2235 |
. . . 4
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → ((𝑥 × 𝐵) ∈ Fin ↔ ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin)) |
6 | 5 | imbi2d 229 |
. . 3
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin))) |
7 | | xpeq1 4618 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 × 𝐵) = (𝑦 × 𝐵)) |
8 | 7 | eleq1d 2235 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 × 𝐵) ∈ Fin ↔ (𝑦 × 𝐵) ∈ Fin)) |
9 | 8 | imbi2d 229 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (𝑦 × 𝐵) ∈ Fin))) |
10 | | xpeq1 4618 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 × 𝐵) = (𝐴 × 𝐵)) |
11 | 10 | eleq1d 2235 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑥 × 𝐵) ∈ Fin ↔ (𝐴 × 𝐵) ∈ Fin)) |
12 | 11 | imbi2d 229 |
. . 3
⊢ (𝑥 = 𝐴 → ((𝐵 ∈ Fin → (𝑥 × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → (𝐴 × 𝐵) ∈ Fin))) |
13 | | 0xp 4684 |
. . . . 5
⊢ (∅
× 𝐵) =
∅ |
14 | | 0fin 6850 |
. . . . 5
⊢ ∅
∈ Fin |
15 | 13, 14 | eqeltri 2239 |
. . . 4
⊢ (∅
× 𝐵) ∈
Fin |
16 | 15 | a1i 9 |
. . 3
⊢ (𝐵 ∈ Fin → (∅
× 𝐵) ∈
Fin) |
17 | | xpeq1 4618 |
. . . . . . . 8
⊢ (𝑦 = ∅ → (𝑦 × 𝐵) = (∅ × 𝐵)) |
18 | 17, 15 | eqeltrdi 2257 |
. . . . . . 7
⊢ (𝑦 = ∅ → (𝑦 × 𝐵) ∈ Fin) |
19 | 18 | a1i13 24 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑦 = ∅ → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) |
20 | | sneq 3587 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑤 → {𝑧} = {𝑤}) |
21 | 20 | difeq2d 3240 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → (𝑦 ∖ {𝑧}) = (𝑦 ∖ {𝑤})) |
22 | 21 | xpeq1d 4627 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → ((𝑦 ∖ {𝑧}) × 𝐵) = ((𝑦 ∖ {𝑤}) × 𝐵)) |
23 | 22 | eleq1d 2235 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → (((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin ↔ ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)) |
24 | 23 | imbi2d 229 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) ↔ (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))) |
25 | 24 | rspcv 2826 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑦 → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))) |
26 | 25 | adantl 275 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin))) |
27 | | pm2.27 40 |
. . . . . . . . . 10
⊢ (𝐵 ∈ Fin → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin) → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)) |
28 | 27 | ad2antlr 481 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((𝐵 ∈ Fin → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin) → ((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin)) |
29 | | vex 2729 |
. . . . . . . . . . . . . . 15
⊢ 𝑤 ∈ V |
30 | 29 | snex 4164 |
. . . . . . . . . . . . . 14
⊢ {𝑤} ∈ V |
31 | | xpexg 4718 |
. . . . . . . . . . . . . 14
⊢ (({𝑤} ∈ V ∧ 𝐵 ∈ Fin) → ({𝑤} × 𝐵) ∈ V) |
32 | 30, 31 | mpan 421 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ Fin → ({𝑤} × 𝐵) ∈ V) |
33 | | id 19 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ Fin → 𝐵 ∈ Fin) |
34 | | 2ndconst 6190 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ V → (2nd
↾ ({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto→𝐵) |
35 | 29, 34 | mp1i 10 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ Fin →
(2nd ↾ ({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto→𝐵) |
36 | | f1oen2g 6721 |
. . . . . . . . . . . . 13
⊢ ((({𝑤} × 𝐵) ∈ V ∧ 𝐵 ∈ Fin ∧ (2nd ↾
({𝑤} × 𝐵)):({𝑤} × 𝐵)–1-1-onto→𝐵) → ({𝑤} × 𝐵) ≈ 𝐵) |
37 | 32, 33, 35, 36 | syl3anc 1228 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ Fin → ({𝑤} × 𝐵) ≈ 𝐵) |
38 | | enfii 6840 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ Fin ∧ ({𝑤} × 𝐵) ≈ 𝐵) → ({𝑤} × 𝐵) ∈ Fin) |
39 | 37, 38 | mpdan 418 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ Fin → ({𝑤} × 𝐵) ∈ Fin) |
40 | 39 | ad2antlr 481 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ({𝑤} × 𝐵) ∈ Fin) |
41 | | incom 3314 |
. . . . . . . . . . . . . 14
⊢ ({𝑤} ∩ (𝑦 ∖ {𝑤})) = ((𝑦 ∖ {𝑤}) ∩ {𝑤}) |
42 | | disjdif 3481 |
. . . . . . . . . . . . . 14
⊢ ({𝑤} ∩ (𝑦 ∖ {𝑤})) = ∅ |
43 | 41, 42 | eqtr3i 2188 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∖ {𝑤}) ∩ {𝑤}) = ∅ |
44 | | xpdisj1 5028 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∖ {𝑤}) ∩ {𝑤}) = ∅ → (((𝑦 ∖ {𝑤}) × 𝐵) ∩ ({𝑤} × 𝐵)) = ∅) |
45 | 43, 44 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∖ {𝑤}) × 𝐵) ∩ ({𝑤} × 𝐵)) = ∅ |
46 | | unfidisj 6887 |
. . . . . . . . . . . 12
⊢ ((((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin ∧ ({𝑤} × 𝐵) ∈ Fin ∧ (((𝑦 ∖ {𝑤}) × 𝐵) ∩ ({𝑤} × 𝐵)) = ∅) → (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin) |
47 | 45, 46 | mp3an3 1316 |
. . . . . . . . . . 11
⊢ ((((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin ∧ ({𝑤} × 𝐵) ∈ Fin) → (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin) |
48 | | xpundir 4661 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∖ {𝑤}) ∪ {𝑤}) × 𝐵) = (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) |
49 | | fidifsnid 6837 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ Fin ∧ 𝑤 ∈ 𝑦) → ((𝑦 ∖ {𝑤}) ∪ {𝑤}) = 𝑦) |
50 | 49 | adantlr 469 |
. . . . . . . . . . . . . 14
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((𝑦 ∖ {𝑤}) ∪ {𝑤}) = 𝑦) |
51 | 50 | xpeq1d 4627 |
. . . . . . . . . . . . 13
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (((𝑦 ∖ {𝑤}) ∪ {𝑤}) × 𝐵) = (𝑦 × 𝐵)) |
52 | 48, 51 | eqtr3id 2213 |
. . . . . . . . . . . 12
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) = (𝑦 × 𝐵)) |
53 | 52 | eleq1d 2235 |
. . . . . . . . . . 11
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((((𝑦 ∖ {𝑤}) × 𝐵) ∪ ({𝑤} × 𝐵)) ∈ Fin ↔ (𝑦 × 𝐵) ∈ Fin)) |
54 | 47, 53 | syl5ib 153 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → ((((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin ∧ ({𝑤} × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) |
55 | 40, 54 | mpan2d 425 |
. . . . . . . . 9
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (((𝑦 ∖ {𝑤}) × 𝐵) ∈ Fin → (𝑦 × 𝐵) ∈ Fin)) |
56 | 26, 28, 55 | 3syld 57 |
. . . . . . . 8
⊢ (((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ 𝑤 ∈ 𝑦) → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) |
57 | 56 | ex 114 |
. . . . . . 7
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑤 ∈ 𝑦 → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) |
58 | 57 | exlimdv 1807 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) →
(∃𝑤 𝑤 ∈ 𝑦 → (∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) |
59 | | fin0or 6852 |
. . . . . . 7
⊢ (𝑦 ∈ Fin → (𝑦 = ∅ ∨ ∃𝑤 𝑤 ∈ 𝑦)) |
60 | 59 | adantr 274 |
. . . . . 6
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝑦 = ∅ ∨ ∃𝑤 𝑤 ∈ 𝑦)) |
61 | 19, 58, 60 | mpjaod 708 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ 𝐵 ∈ Fin) →
(∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin)) |
62 | 61 | ex 114 |
. . . 4
⊢ (𝑦 ∈ Fin → (𝐵 ∈ Fin →
(∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝑦 × 𝐵) ∈ Fin))) |
63 | 62 | com23 78 |
. . 3
⊢ (𝑦 ∈ Fin →
(∀𝑧 ∈ 𝑦 (𝐵 ∈ Fin → ((𝑦 ∖ {𝑧}) × 𝐵) ∈ Fin) → (𝐵 ∈ Fin → (𝑦 × 𝐵) ∈ Fin))) |
64 | 3, 6, 9, 12, 16, 63 | findcard 6854 |
. 2
⊢ (𝐴 ∈ Fin → (𝐵 ∈ Fin → (𝐴 × 𝐵) ∈ Fin)) |
65 | 64 | imp 123 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) |