Step | Hyp | Ref
| Expression |
1 | | seq3split.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) |
2 | | eluzfz2 9967 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) → 𝑁 ∈ ((𝑀 + 1)...𝑁)) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ ((𝑀 + 1)...𝑁)) |
4 | | eleq1 2229 |
. . . . . 6
⊢ (𝑥 = (𝑀 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...𝑁))) |
5 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑥 = (𝑀 + 1) → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘(𝑀 + 1))) |
6 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑥 = (𝑀 + 1) → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))) |
7 | 6 | oveq2d 5858 |
. . . . . . 7
⊢ (𝑥 = (𝑀 + 1) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)))) |
8 | 5, 7 | eqeq12d 2180 |
. . . . . 6
⊢ (𝑥 = (𝑀 + 1) → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))) |
9 | 4, 8 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = (𝑀 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)))))) |
10 | 9 | imbi2d 229 |
. . . 4
⊢ (𝑥 = (𝑀 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))))) |
11 | | eleq1 2229 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑛 ∈ ((𝑀 + 1)...𝑁))) |
12 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘𝑛)) |
13 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) |
14 | 13 | oveq2d 5858 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛))) |
15 | 12, 14 | eqeq12d 2180 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))) |
16 | 11, 15 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛))))) |
17 | 16 | imbi2d 229 |
. . . 4
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))))) |
18 | | eleq1 2229 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) |
19 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘(𝑛 + 1))) |
20 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))) |
21 | 20 | oveq2d 5858 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))) |
22 | 19, 21 | eqeq12d 2180 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))))) |
23 | 18, 22 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))))) |
24 | 23 | imbi2d 229 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))))))) |
25 | | eleq1 2229 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑁 ∈ ((𝑀 + 1)...𝑁))) |
26 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘𝑁)) |
27 | | fveq2 5486 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) |
28 | 27 | oveq2d 5858 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))) |
29 | 26, 28 | eqeq12d 2180 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))) |
30 | 25, 29 | imbi12d 233 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))))) |
31 | 30 | imbi2d 229 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))))) |
32 | | seq3split.4 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝐾)) |
33 | | seq3split.5 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑥) ∈ 𝑆) |
34 | | seq3split.1 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
35 | 32, 33, 34 | seq3p1 10397 |
. . . . . 6
⊢ (𝜑 → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1)))) |
36 | | eluzel2 9471 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) → (𝑀 + 1) ∈ ℤ) |
37 | 1, 36 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
38 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝜑) |
39 | | eluzel2 9471 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈
(ℤ≥‘𝐾) → 𝐾 ∈ ℤ) |
40 | 32, 39 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ ℤ) |
41 | 40 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝐾 ∈ ℤ) |
42 | | eluzelz 9475 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
(ℤ≥‘(𝑀 + 1)) → 𝑥 ∈ ℤ) |
43 | 42 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑥 ∈
ℤ) |
44 | 41 | zred 9313 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝐾 ∈ ℝ) |
45 | | eluzelz 9475 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈
(ℤ≥‘𝐾) → 𝑀 ∈ ℤ) |
46 | 32, 45 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℤ) |
47 | 46 | zred 9313 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℝ) |
48 | 47 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ ℝ) |
49 | 43 | zred 9313 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑥 ∈
ℝ) |
50 | | eluzle 9478 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈
(ℤ≥‘𝐾) → 𝐾 ≤ 𝑀) |
51 | 32, 50 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ≤ 𝑀) |
52 | 51 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝐾 ≤ 𝑀) |
53 | | peano2re 8034 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈
ℝ) |
54 | 48, 53 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑀 + 1) ∈
ℝ) |
55 | 48 | lep1d 8826 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ≤ (𝑀 + 1)) |
56 | | eluzle 9478 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈
(ℤ≥‘(𝑀 + 1)) → (𝑀 + 1) ≤ 𝑥) |
57 | 56 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑀 + 1) ≤ 𝑥) |
58 | 48, 54, 49, 55, 57 | letrd 8022 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ≤ 𝑥) |
59 | 44, 48, 49, 52, 58 | letrd 8022 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝐾 ≤ 𝑥) |
60 | | eluz2 9472 |
. . . . . . . . . 10
⊢ (𝑥 ∈
(ℤ≥‘𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾 ≤ 𝑥)) |
61 | 41, 43, 59, 60 | syl3anbrc 1171 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑥 ∈
(ℤ≥‘𝐾)) |
62 | 38, 61, 33 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝑆) |
63 | 37, 62, 34 | seq3-1 10395 |
. . . . . . 7
⊢ (𝜑 → (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)) = (𝐹‘(𝑀 + 1))) |
64 | 63 | oveq2d 5858 |
. . . . . 6
⊢ (𝜑 → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1)))) |
65 | 35, 64 | eqtr4d 2201 |
. . . . 5
⊢ (𝜑 → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)))) |
66 | 65 | a1i13 24 |
. . . 4
⊢ ((𝑀 + 1) ∈ ℤ →
(𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)))))) |
67 | | peano2fzr 9972 |
. . . . . . . 8
⊢ ((𝑛 ∈
(ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁)) |
68 | 67 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ ((𝑀 + 1)...𝑁)) |
69 | 68 | expr 373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑛 ∈ ((𝑀 + 1)...𝑁))) |
70 | 69 | imim1d 75 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛))))) |
71 | | oveq1 5849 |
. . . . . 6
⊢
((seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) → ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1)))) |
72 | | simprl 521 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ≥‘(𝑀 + 1))) |
73 | | peano2uz 9521 |
. . . . . . . . . . 11
⊢ (𝑀 ∈
(ℤ≥‘𝐾) → (𝑀 + 1) ∈
(ℤ≥‘𝐾)) |
74 | 32, 73 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 1) ∈
(ℤ≥‘𝐾)) |
75 | 74 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑀 + 1) ∈
(ℤ≥‘𝐾)) |
76 | | uztrn 9482 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘(𝑀 + 1)) ∧ (𝑀 + 1) ∈
(ℤ≥‘𝐾)) → 𝑛 ∈ (ℤ≥‘𝐾)) |
77 | 72, 75, 76 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ≥‘𝐾)) |
78 | 33 | adantlr 469 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑥) ∈ 𝑆) |
79 | 34 | adantlr 469 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
80 | 77, 78, 79 | seq3p1 10397 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
81 | 62 | adantlr 469 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝑆) |
82 | 72, 81, 79 | seq3p1 10397 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)) = ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
83 | 82 | oveq2d 5858 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
84 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝜑) |
85 | | eqid 2165 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘𝐾) = (ℤ≥‘𝐾) |
86 | 85, 40, 33, 34 | seqf 10396 |
. . . . . . . . . . 11
⊢ (𝜑 → seq𝐾( + , 𝐹):(ℤ≥‘𝐾)⟶𝑆) |
87 | 86, 32 | ffvelrnd 5621 |
. . . . . . . . . 10
⊢ (𝜑 → (seq𝐾( + , 𝐹)‘𝑀) ∈ 𝑆) |
88 | 87 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq𝐾( + , 𝐹)‘𝑀) ∈ 𝑆) |
89 | | eqid 2165 |
. . . . . . . . . . 11
⊢
(ℤ≥‘(𝑀 + 1)) =
(ℤ≥‘(𝑀 + 1)) |
90 | 37 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑀 + 1) ∈ ℤ) |
91 | 89, 90, 81, 79 | seqf 10396 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → seq(𝑀 + 1)( + , 𝐹):(ℤ≥‘(𝑀 + 1))⟶𝑆) |
92 | 91, 72 | ffvelrnd 5621 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq(𝑀 + 1)( + , 𝐹)‘𝑛) ∈ 𝑆) |
93 | | fveq2 5486 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑛 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑛 + 1))) |
94 | 93 | eleq1d 2235 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) |
95 | 33 | ralrimiva 2539 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝐾)(𝐹‘𝑥) ∈ 𝑆) |
96 | 95 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑥 ∈ (ℤ≥‘𝐾)(𝐹‘𝑥) ∈ 𝑆) |
97 | | fzssuz 10000 |
. . . . . . . . . . . 12
⊢ ((𝑀 + 1)...𝑁) ⊆
(ℤ≥‘(𝑀 + 1)) |
98 | | uzss 9486 |
. . . . . . . . . . . . 13
⊢ ((𝑀 + 1) ∈
(ℤ≥‘𝐾) →
(ℤ≥‘(𝑀 + 1)) ⊆
(ℤ≥‘𝐾)) |
99 | 74, 98 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ⊆
(ℤ≥‘𝐾)) |
100 | 97, 99 | sstrid 3153 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑀 + 1)...𝑁) ⊆
(ℤ≥‘𝐾)) |
101 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈
(ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) |
102 | | ssel2 3137 |
. . . . . . . . . . 11
⊢ ((((𝑀 + 1)...𝑁) ⊆
(ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝑛 + 1) ∈
(ℤ≥‘𝐾)) |
103 | 100, 101,
102 | syl2an 287 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑛 + 1) ∈
(ℤ≥‘𝐾)) |
104 | 94, 96, 103 | rspcdva 2835 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) |
105 | | seq3split.2 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
106 | 105 | caovassg 6000 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((seq𝐾( + , 𝐹)‘𝑀) ∈ 𝑆 ∧ (seq(𝑀 + 1)( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) → (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
107 | 84, 88, 92, 104, 106 | syl13anc 1230 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
108 | 83, 107 | eqtr4d 2201 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1)))) |
109 | 80, 108 | eqeq12d 2180 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))) ↔ ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))))) |
110 | 71, 109 | syl5ibr 155 |
. . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))))) |
111 | 70, 110 | animpimp2impd 549 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘(𝑀 + 1)) → ((𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))) → (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))))))) |
112 | 10, 17, 24, 31, 66, 111 | uzind4 9526 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) → (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))))) |
113 | 1, 112 | mpcom 36 |
. 2
⊢ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))) |
114 | 3, 113 | mpd 13 |
1
⊢ (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))) |