ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3split GIF version

Theorem seq3split 10435
Description: Split a sequence into two sequences. (Contributed by Jim Kingdon, 16-Aug-2021.) (Revised by Jim Kingdon, 21-Oct-2022.)
Hypotheses
Ref Expression
seq3split.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seq3split.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
seq3split.3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
seq3split.4 (𝜑𝑀 ∈ (ℤ𝐾))
seq3split.5 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐹𝑥) ∈ 𝑆)
Assertion
Ref Expression
seq3split (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝐾,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑁,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem seq3split
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 seq3split.3 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝑀 + 1)))
2 eluzfz2 9988 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → 𝑁 ∈ ((𝑀 + 1)...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ ((𝑀 + 1)...𝑁))
4 eleq1 2233 . . . . . 6 (𝑥 = (𝑀 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑀 + 1) ∈ ((𝑀 + 1)...𝑁)))
5 fveq2 5496 . . . . . . 7 (𝑥 = (𝑀 + 1) → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘(𝑀 + 1)))
6 fveq2 5496 . . . . . . . 8 (𝑥 = (𝑀 + 1) → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)))
76oveq2d 5869 . . . . . . 7 (𝑥 = (𝑀 + 1) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))
85, 7eqeq12d 2185 . . . . . 6 (𝑥 = (𝑀 + 1) → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)))))
94, 8imbi12d 233 . . . . 5 (𝑥 = (𝑀 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))))
109imbi2d 229 . . . 4 (𝑥 = (𝑀 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)))))))
11 eleq1 2233 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑛 ∈ ((𝑀 + 1)...𝑁)))
12 fveq2 5496 . . . . . . 7 (𝑥 = 𝑛 → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘𝑛))
13 fveq2 5496 . . . . . . . 8 (𝑥 = 𝑛 → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘𝑛))
1413oveq2d 5869 . . . . . . 7 (𝑥 = 𝑛 → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))
1512, 14eqeq12d 2185 . . . . . 6 (𝑥 = 𝑛 → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛))))
1611, 15imbi12d 233 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))))
1716imbi2d 229 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛))))))
18 eleq1 2233 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)))
19 fveq2 5496 . . . . . . 7 (𝑥 = (𝑛 + 1) → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘(𝑛 + 1)))
20 fveq2 5496 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))
2120oveq2d 5869 . . . . . . 7 (𝑥 = (𝑛 + 1) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))))
2219, 21eqeq12d 2185 . . . . . 6 (𝑥 = (𝑛 + 1) → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))))
2318, 22imbi12d 233 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))))))
2423imbi2d 229 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))))))
25 eleq1 2233 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ ((𝑀 + 1)...𝑁) ↔ 𝑁 ∈ ((𝑀 + 1)...𝑁)))
26 fveq2 5496 . . . . . . 7 (𝑥 = 𝑁 → (seq𝐾( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐹)‘𝑁))
27 fveq2 5496 . . . . . . . 8 (𝑥 = 𝑁 → (seq(𝑀 + 1)( + , 𝐹)‘𝑥) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁))
2827oveq2d 5869 . . . . . . 7 (𝑥 = 𝑁 → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
2926, 28eqeq12d 2185 . . . . . 6 (𝑥 = 𝑁 → ((seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)) ↔ (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))))
3025, 29imbi12d 233 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥))) ↔ (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))))
3130imbi2d 229 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑥) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑥)))) ↔ (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))))))
32 seq3split.4 . . . . . . 7 (𝜑𝑀 ∈ (ℤ𝐾))
33 seq3split.5 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐹𝑥) ∈ 𝑆)
34 seq3split.1 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3532, 33, 34seq3p1 10418 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
36 eluzel2 9492 . . . . . . . . 9 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 + 1) ∈ ℤ)
371, 36syl 14 . . . . . . . 8 (𝜑 → (𝑀 + 1) ∈ ℤ)
38 simpl 108 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝜑)
39 eluzel2 9492 . . . . . . . . . . . 12 (𝑀 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
4032, 39syl 14 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℤ)
4140adantr 274 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝐾 ∈ ℤ)
42 eluzelz 9496 . . . . . . . . . . 11 (𝑥 ∈ (ℤ‘(𝑀 + 1)) → 𝑥 ∈ ℤ)
4342adantl 275 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℤ)
4441zred 9334 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝐾 ∈ ℝ)
45 eluzelz 9496 . . . . . . . . . . . . . 14 (𝑀 ∈ (ℤ𝐾) → 𝑀 ∈ ℤ)
4632, 45syl 14 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℤ)
4746zred 9334 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℝ)
4847adantr 274 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℝ)
4943zred 9334 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℝ)
50 eluzle 9499 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ𝐾) → 𝐾𝑀)
5132, 50syl 14 . . . . . . . . . . . 12 (𝜑𝐾𝑀)
5251adantr 274 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝐾𝑀)
53 peano2re 8055 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
5448, 53syl 14 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ∈ ℝ)
5548lep1d 8847 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ≤ (𝑀 + 1))
56 eluzle 9499 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 + 1) ≤ 𝑥)
5756adantl 275 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ≤ 𝑥)
5848, 54, 49, 55, 57letrd 8043 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑀𝑥)
5944, 48, 49, 52, 58letrd 8043 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝐾𝑥)
60 eluz2 9493 . . . . . . . . . 10 (𝑥 ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝐾𝑥))
6141, 43, 59, 60syl3anbrc 1176 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ (ℤ𝐾))
6238, 61, 33syl2anc 409 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝑆)
6337, 62, 34seq3-1 10416 . . . . . . 7 (𝜑 → (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1)) = (𝐹‘(𝑀 + 1)))
6463oveq2d 5869 . . . . . 6 (𝜑 → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + (𝐹‘(𝑀 + 1))))
6535, 64eqtr4d 2206 . . . . 5 (𝜑 → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))
6665a1i13 24 . . . 4 ((𝑀 + 1) ∈ ℤ → (𝜑 → ((𝑀 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑀 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑀 + 1))))))
67 peano2fzr 9993 . . . . . . . 8 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
6867adantl 275 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ ((𝑀 + 1)...𝑁))
6968expr 373 . . . . . 6 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → 𝑛 ∈ ((𝑀 + 1)...𝑁)))
7069imim1d 75 . . . . 5 ((𝜑𝑛 ∈ (ℤ‘(𝑀 + 1))) → ((𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛))) → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))))
71 oveq1 5860 . . . . . 6 ((seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) → ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))))
72 simprl 526 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ‘(𝑀 + 1)))
73 peano2uz 9542 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝐾) → (𝑀 + 1) ∈ (ℤ𝐾))
7432, 73syl 14 . . . . . . . . . 10 (𝜑 → (𝑀 + 1) ∈ (ℤ𝐾))
7574adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑀 + 1) ∈ (ℤ𝐾))
76 uztrn 9503 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑀 + 1) ∈ (ℤ𝐾)) → 𝑛 ∈ (ℤ𝐾))
7772, 75, 76syl2anc 409 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝑛 ∈ (ℤ𝐾))
7833adantlr 474 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ (ℤ𝐾)) → (𝐹𝑥) ∈ 𝑆)
7934adantlr 474 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8077, 78, 79seq3p1 10418 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
8162adantlr 474 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) ∧ 𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝑆)
8272, 81, 79seq3p1 10418 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)) = ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))
8382oveq2d 5869 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
84 simpl 108 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → 𝜑)
85 eqid 2170 . . . . . . . . . . . 12 (ℤ𝐾) = (ℤ𝐾)
8685, 40, 33, 34seqf 10417 . . . . . . . . . . 11 (𝜑 → seq𝐾( + , 𝐹):(ℤ𝐾)⟶𝑆)
8786, 32ffvelrnd 5632 . . . . . . . . . 10 (𝜑 → (seq𝐾( + , 𝐹)‘𝑀) ∈ 𝑆)
8887adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq𝐾( + , 𝐹)‘𝑀) ∈ 𝑆)
89 eqid 2170 . . . . . . . . . . 11 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
9037adantr 274 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑀 + 1) ∈ ℤ)
9189, 90, 81, 79seqf 10417 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → seq(𝑀 + 1)( + , 𝐹):(ℤ‘(𝑀 + 1))⟶𝑆)
9291, 72ffvelrnd 5632 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (seq(𝑀 + 1)( + , 𝐹)‘𝑛) ∈ 𝑆)
93 fveq2 5496 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
9493eleq1d 2239 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆))
9533ralrimiva 2543 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (ℤ𝐾)(𝐹𝑥) ∈ 𝑆)
9695adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ∀𝑥 ∈ (ℤ𝐾)(𝐹𝑥) ∈ 𝑆)
97 fzssuz 10021 . . . . . . . . . . . 12 ((𝑀 + 1)...𝑁) ⊆ (ℤ‘(𝑀 + 1))
98 uzss 9507 . . . . . . . . . . . . 13 ((𝑀 + 1) ∈ (ℤ𝐾) → (ℤ‘(𝑀 + 1)) ⊆ (ℤ𝐾))
9974, 98syl 14 . . . . . . . . . . . 12 (𝜑 → (ℤ‘(𝑀 + 1)) ⊆ (ℤ𝐾))
10097, 99sstrid 3158 . . . . . . . . . . 11 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (ℤ𝐾))
101 simpr 109 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))
102 ssel2 3142 . . . . . . . . . . 11 ((((𝑀 + 1)...𝑁) ⊆ (ℤ𝐾) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁)) → (𝑛 + 1) ∈ (ℤ𝐾))
103100, 101, 102syl2an 287 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝑛 + 1) ∈ (ℤ𝐾))
10494, 96, 103rspcdva 2839 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
105 seq3split.2 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
106105caovassg 6011 . . . . . . . . 9 ((𝜑 ∧ ((seq𝐾( + , 𝐹)‘𝑀) ∈ 𝑆 ∧ (seq(𝑀 + 1)( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) → (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
10784, 88, 92, 104, 106syl13anc 1235 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐹)‘𝑀) + ((seq(𝑀 + 1)( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))))
10883, 107eqtr4d 2206 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1))))
10980, 108eqeq12d 2185 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1))) ↔ ((seq𝐾( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = (((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) + (𝐹‘(𝑛 + 1)))))
11071, 109syl5ibr 155 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ‘(𝑀 + 1)) ∧ (𝑛 + 1) ∈ ((𝑀 + 1)...𝑁))) → ((seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))))
11170, 110animpimp2impd 554 . . . 4 (𝑛 ∈ (ℤ‘(𝑀 + 1)) → ((𝜑 → (𝑛 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑛) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑛)))) → (𝜑 → ((𝑛 + 1) ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘(𝑛 + 1)))))))
11210, 17, 24, 31, 66, 111uzind4 9547 . . 3 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))))
1131, 112mpcom 36 . 2 (𝜑 → (𝑁 ∈ ((𝑀 + 1)...𝑁) → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))))
1143, 113mpd 13 1 (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = ((seq𝐾( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  wral 2448  wss 3121   class class class wbr 3989  cfv 5198  (class class class)co 5853  cr 7773  1c1 7775   + caddc 7777  cle 7955  cz 9212  cuz 9487  ...cfz 9965  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-seqfrec 10402
This theorem is referenced by:  seq3-1p  10436  seq3f1olemqsumk  10455  seq3f1olemqsum  10456  bcval5  10697  clim2ser  11300  clim2ser2  11301  isumsplit  11454  cvgratnnlemseq  11489  clim2divap  11503
  Copyright terms: Public domain W3C validator