| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > a2and | GIF version | ||
| Description: Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
| Ref | Expression |
|---|---|
| a2and.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (𝜏 → 𝜃))) |
| a2and.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → 𝜒)) |
| Ref | Expression |
|---|---|
| a2and | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) → 𝜏) → ((𝜓 ∧ 𝜌) → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a2and.2 | . . . . . . 7 ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → 𝜒)) | |
| 2 | 1 | expd 258 | . . . . . 6 ⊢ (𝜑 → (𝜓 → (𝜌 → 𝜒))) |
| 3 | 2 | imdistand 447 | . . . . 5 ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (𝜓 ∧ 𝜒))) |
| 4 | 3 | imp 124 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜌)) → (𝜓 ∧ 𝜒)) |
| 5 | a2and.1 | . . . . 5 ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (𝜏 → 𝜃))) | |
| 6 | 5 | imp 124 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜌)) → (𝜏 → 𝜃)) |
| 7 | 4, 6 | embantd 56 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜌)) → (((𝜓 ∧ 𝜒) → 𝜏) → 𝜃)) |
| 8 | 7 | ex 115 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (((𝜓 ∧ 𝜒) → 𝜏) → 𝜃))) |
| 9 | 8 | com23 78 | 1 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) → 𝜏) → ((𝜓 ∧ 𝜌) → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |