Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > a2and | GIF version |
Description: Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
Ref | Expression |
---|---|
a2and.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (𝜏 → 𝜃))) |
a2and.2 | ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → 𝜒)) |
Ref | Expression |
---|---|
a2and | ⊢ (𝜑 → (((𝜓 ∧ 𝜒) → 𝜏) → ((𝜓 ∧ 𝜌) → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2and.2 | . . . . . . 7 ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → 𝜒)) | |
2 | 1 | expd 256 | . . . . . 6 ⊢ (𝜑 → (𝜓 → (𝜌 → 𝜒))) |
3 | 2 | imdistand 445 | . . . . 5 ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (𝜓 ∧ 𝜒))) |
4 | 3 | imp 123 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜌)) → (𝜓 ∧ 𝜒)) |
5 | a2and.1 | . . . . 5 ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (𝜏 → 𝜃))) | |
6 | 5 | imp 123 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜌)) → (𝜏 → 𝜃)) |
7 | 4, 6 | embantd 56 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜌)) → (((𝜓 ∧ 𝜒) → 𝜏) → 𝜃)) |
8 | 7 | ex 114 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜌) → (((𝜓 ∧ 𝜒) → 𝜏) → 𝜃))) |
9 | 8 | com23 78 | 1 ⊢ (𝜑 → (((𝜓 ∧ 𝜒) → 𝜏) → ((𝜓 ∧ 𝜌) → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |