| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > embantd | GIF version | ||
| Description: Deduction embedding an antecedent. (Contributed by Wolf Lammen, 4-Oct-2013.) |
| Ref | Expression |
|---|---|
| embantd.1 | ⊢ (𝜑 → 𝜓) |
| embantd.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| embantd | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | embantd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | embantd.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 3 | 2 | imim2d 54 | . 2 ⊢ (𝜑 → ((𝜓 → 𝜒) → (𝜓 → 𝜃))) |
| 4 | 1, 3 | mpid 42 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: a2and 558 el 4211 findcard2d 6952 findcard2sd 6953 exprmfct 12306 sqrt2irr 12330 pockthg 12526 iscnp4 14454 2sqlem6 15361 bj-exlimmp 15415 |
| Copyright terms: Public domain | W3C validator |