Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > a2and | Unicode version |
Description: Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
Ref | Expression |
---|---|
a2and.1 | |
a2and.2 |
Ref | Expression |
---|---|
a2and |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2and.2 | . . . . . . 7 | |
2 | 1 | expd 256 | . . . . . 6 |
3 | 2 | imdistand 444 | . . . . 5 |
4 | 3 | imp 123 | . . . 4 |
5 | a2and.1 | . . . . 5 | |
6 | 5 | imp 123 | . . . 4 |
7 | 4, 6 | embantd 56 | . . 3 |
8 | 7 | ex 114 | . 2 |
9 | 8 | com23 78 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |