Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alsyl | GIF version |
Description: Theorem *10.3 in [WhiteheadRussell] p. 150. (Contributed by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
alsyl | ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜒)) → ∀𝑥(𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.33 343 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜒)) → (𝜑 → 𝜒)) | |
2 | 1 | alanimi 1447 | 1 ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜒)) → ∀𝑥(𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 |
This theorem is referenced by: barbara 2112 |
Copyright terms: Public domain | W3C validator |