| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > alsyl | GIF version | ||
| Description: Theorem *10.3 in [WhiteheadRussell] p. 150. (Contributed by Andrew Salmon, 8-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| alsyl | ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜒)) → ∀𝑥(𝜑 → 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm3.33 345 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜒)) → (𝜑 → 𝜒)) | |
| 2 | 1 | alanimi 1473 | 1 ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜒)) → ∀𝑥(𝜑 → 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem is referenced by: barbara 2143 | 
| Copyright terms: Public domain | W3C validator |