HomeHome Intuitionistic Logic Explorer
Theorem List (p. 17 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1601-1700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnexd 1601 Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ¬ 𝜓)       (𝜑 → ¬ ∃𝑥𝜓)
 
Theoremexbidh 1602 Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
 
Theoremalbid 1603 Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
 
Theoremexbid 1604 Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
 
Theoremexsimpl 1605 Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
 
Theoremexsimpr 1606 Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
 
Theoremalexdc 1607 Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1633. (Contributed by Jim Kingdon, 2-Jun-2018.)
(∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑))
 
Theorem19.29 1608 Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.29r 1609 Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.29r2 1610 Variation of Theorem 19.29 of [Margaris] p. 90 with double quantification. (Contributed by NM, 3-Feb-2005.)
((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))
 
Theorem19.29x 1611 Variation of Theorem 19.29 of [Margaris] p. 90 with mixed quantification. (Contributed by NM, 11-Feb-2005.)
((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))
 
Theorem19.35-1 1612 Forward direction of Theorem 19.35 of [Margaris] p. 90. The converse holds for classical logic but not (for all propositions) in intuitionistic logic. (Contributed by Mario Carneiro, 2-Feb-2015.)
(∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
 
Theorem19.35i 1613 Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
𝑥(𝜑𝜓)       (∀𝑥𝜑 → ∃𝑥𝜓)
 
Theorem19.25 1614 Theorem 19.25 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
(∀𝑦𝑥(𝜑𝜓) → (∃𝑦𝑥𝜑 → ∃𝑦𝑥𝜓))
 
Theorem19.30dc 1615 Theorem 19.30 of [Margaris] p. 90, with an additional decidability condition. (Contributed by Jim Kingdon, 21-Jul-2018.)
(DECID𝑥𝜓 → (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ∨ ∃𝑥𝜓)))
 
Theorem19.43 1616 Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
(∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
 
Theorem19.33b2 1617 The antecedent provides a condition implying the converse of 19.33 1472. Compare Theorem 19.33 of [Margaris] p. 90. This variation of 19.33bdc 1618 is intuitionistically valid without a decidability condition. (Contributed by Mario Carneiro, 2-Feb-2015.)
((¬ ∃𝑥𝜑 ∨ ¬ ∃𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓)))
 
Theorem19.33bdc 1618 Converse of 19.33 1472 given ¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) and a decidability condition. Compare Theorem 19.33 of [Margaris] p. 90. For a version which does not require a decidability condition, see 19.33b2 1617 (Contributed by Jim Kingdon, 23-Apr-2018.)
(DECID𝑥𝜑 → (¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓))))
 
Theorem19.40 1619 Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
 
Theorem19.40-2 1620 Theorem *11.42 in [WhiteheadRussell] p. 163. Theorem 19.40 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.)
(∃𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦𝜑 ∧ ∃𝑥𝑦𝜓))
 
Theoremexintrbi 1621 Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑𝜓)))
 
Theoremexintr 1622 Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
 
Theoremalsyl 1623 Theorem *10.3 in [WhiteheadRussell] p. 150. (Contributed by Andrew Salmon, 8-Jun-2011.)
((∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜒)) → ∀𝑥(𝜑𝜒))
 
Theoremhbex 1624 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
(𝜑 → ∀𝑥𝜑)       (∃𝑦𝜑 → ∀𝑥𝑦𝜑)
 
Theoremnfex 1625 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
𝑥𝜑       𝑥𝑦𝜑
 
Theorem19.2 1626 Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. (Contributed by O'Cat, 31-Mar-2008.)
(∀𝑥𝜑 → ∃𝑦𝜑)
 
Theoremi19.24 1627 Theorem 19.24 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1612, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.)
((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))       ((∀𝑥𝜑 → ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theoremi19.39 1628 Theorem 19.39 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1612, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.)
((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))       ((∃𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.9ht 1629 A closed version of one direction of 19.9 1632. (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑𝜑))
 
Theorem19.9t 1630 A closed version of 19.9 1632. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortended by Wolf Lammen, 30-Dec-2017.)
(Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
 
Theorem19.9h 1631 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.)
(𝜑 → ∀𝑥𝜑)       (∃𝑥𝜑𝜑)
 
Theorem19.9 1632 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
𝑥𝜑       (∃𝑥𝜑𝜑)
 
Theoremalexim 1633 One direction of theorem 19.6 of [Margaris] p. 89. The converse holds given a decidability condition, as seen at alexdc 1607. (Contributed by Jim Kingdon, 2-Jul-2018.)
(∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑)
 
Theoremexnalim 1634 One direction of Theorem 19.14 of [Margaris] p. 90. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
(∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑)
 
Theoremexanaliim 1635 A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
(∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑𝜓))
 
Theoremalexnim 1636 A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.)
(∀𝑥𝑦 ¬ 𝜑 → ¬ ∃𝑥𝑦𝜑)
 
Theoremnnal 1637 The double negation of a universal quantification implies the universal quantification of the double negation. (Contributed by BJ, 24-Nov-2023.)
(¬ ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ¬ 𝜑)
 
Theoremax6blem 1638 If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. This theorem doesn't use ax6b 1639 compared to hbnt 1641. (Contributed by GD, 27-Jan-2018.)
(𝜑 → ∀𝑥𝜑)       𝜑 → ∀𝑥 ¬ 𝜑)
 
Theoremax6b 1639 Quantified Negation. Axiom C5-2 of [Monk2] p. 113.

(Contributed by GD, 27-Jan-2018.)

(¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 
Theoremhbn1 1640 𝑥 is not free in ¬ ∀𝑥𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.)
(¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 
Theoremhbnt 1641 Closed theorem version of bound-variable hypothesis builder hbn 1642. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
 
Theoremhbn 1642 If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)       𝜑 → ∀𝑥 ¬ 𝜑)
 
Theoremhbnd 1643 Deduction form of bound-variable hypothesis builder hbn 1642. (Contributed by NM, 3-Jan-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓))
 
Theoremnfnt 1644 If 𝑥 is not free in 𝜑, then it is not free in ¬ 𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.)
(Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
 
Theoremnfnd 1645 Deduction associated with nfnt 1644. (Contributed by Mario Carneiro, 24-Sep-2016.)
(𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥 ¬ 𝜓)
 
Theoremnfn 1646 Inference associated with nfnt 1644. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑       𝑥 ¬ 𝜑
 
Theoremnfdc 1647 If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.)
𝑥𝜑       𝑥DECID 𝜑
 
Theoremmodal-5 1648 The analog in our predicate calculus of axiom 5 of modal logic S5. (Contributed by NM, 5-Oct-2005.)
(¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑)
 
Theorem19.9d 1649 A deduction version of one direction of 19.9 1632. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
(𝜓 → Ⅎ𝑥𝜑)       (𝜓 → (∃𝑥𝜑𝜑))
 
Theorem19.9hd 1650 A deduction version of one direction of 19.9 1632. This is an older variation of this theorem; new proofs should use 19.9d 1649. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝜓 → (𝜑 → ∀𝑥𝜑))       (𝜓 → (∃𝑥𝜑𝜑))
 
Theoremexcomim 1651 One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
 
Theoremexcom 1652 Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
 
Theorem19.12 1653 Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Theorem19.19 1654 Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∃𝑥𝜓))
 
Theorem19.21-2 1655 Theorem 19.21 of [Margaris] p. 90 but with 2 quantifiers. (Contributed by NM, 4-Feb-2005.)
𝑥𝜑    &   𝑦𝜑       (∀𝑥𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝑦𝜓))
 
Theoremnf2 1656 An alternate definition of df-nf 1449, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.)
(Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
 
Theoremnf3 1657 An alternate definition of df-nf 1449. (Contributed by Mario Carneiro, 24-Sep-2016.)
(Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑𝜑))
 
Theoremnf4dc 1658 Variable 𝑥 is effectively not free in 𝜑 iff 𝜑 is always true or always false, given a decidability condition. The reverse direction, nf4r 1659, holds for all propositions. (Contributed by Jim Kingdon, 21-Jul-2018.)
(DECID𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)))
 
Theoremnf4r 1659 If 𝜑 is always true or always false, then variable 𝑥 is effectively not free in 𝜑. The converse holds given a decidability condition, as seen at nf4dc 1658. (Contributed by Jim Kingdon, 21-Jul-2018.)
((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑)
 
Theorem19.36i 1660 Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
𝑥𝜓    &   𝑥(𝜑𝜓)       (∀𝑥𝜑𝜓)
 
Theorem19.36-1 1661 Closed form of 19.36i 1660. One direction of Theorem 19.36 of [Margaris] p. 90. The converse holds in classical logic, but does not hold (for all propositions) in intuitionistic logic. (Contributed by Jim Kingdon, 20-Jun-2018.)
𝑥𝜓       (∃𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorem19.37-1 1662 One direction of Theorem 19.37 of [Margaris] p. 90. The converse holds in classical logic but not, in general, here. (Contributed by Jim Kingdon, 21-Jun-2018.)
𝑥𝜑       (∃𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓))
 
Theorem19.37aiv 1663* Inference from Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
𝑥(𝜑𝜓)       (𝜑 → ∃𝑥𝜓)
 
Theorem19.38 1664 Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
 
Theorem19.23t 1665 Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
(Ⅎ𝑥𝜓 → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
 
Theorem19.23 1666 Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜓       (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.32dc 1667 Theorem 19.32 of [Margaris] p. 90, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.)
𝑥𝜑       (DECID 𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)))
 
Theorem19.32r 1668 One direction of Theorem 19.32 of [Margaris] p. 90. The converse holds if 𝜑 is decidable, as seen at 19.32dc 1667. (Contributed by Jim Kingdon, 28-Jul-2018.)
𝑥𝜑       ((𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
 
Theorem19.31r 1669 One direction of Theorem 19.31 of [Margaris] p. 90. The converse holds in classical logic, but not intuitionistic logic. (Contributed by Jim Kingdon, 28-Jul-2018.)
𝑥𝜓       ((∀𝑥𝜑𝜓) → ∀𝑥(𝜑𝜓))
 
Theorem19.44 1670 Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜓       (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.45 1671 Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∃𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))
 
Theorem19.34 1672 Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.41h 1673 Theorem 19.41 of [Margaris] p. 90. New proofs should use 19.41 1674 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)       (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.41 1674 Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
𝑥𝜓       (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.42h 1675 Theorem 19.42 of [Margaris] p. 90. New proofs should use 19.42 1676 instead. (Contributed by NM, 18-Aug-1993.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)       (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
 
Theorem19.42 1676 Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
𝑥𝜑       (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
 
Theoremexcom13 1677 Swap 1st and 3rd existential quantifiers. (Contributed by NM, 9-Mar-1995.)
(∃𝑥𝑦𝑧𝜑 ↔ ∃𝑧𝑦𝑥𝜑)
 
Theoremexrot3 1678 Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.)
(∃𝑥𝑦𝑧𝜑 ↔ ∃𝑦𝑧𝑥𝜑)
 
Theoremexrot4 1679 Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.)
(∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑧𝑤𝑥𝑦𝜑)
 
Theoremnexr 1680 Inference from 19.8a 1578. (Contributed by Jeff Hankins, 26-Jul-2009.)
¬ ∃𝑥𝜑        ¬ 𝜑
 
Theoremexan 1681 Place a conjunct in the scope of an existential quantifier. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∃𝑥𝜑𝜓)       𝑥(𝜑𝜓)
 
Theoremhbexd 1682 Deduction form of bound-variable hypothesis builder hbex 1624. (Contributed by NM, 2-Jan-2002.)
(𝜑 → ∀𝑦𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → (∃𝑦𝜓 → ∀𝑥𝑦𝜓))
 
Theoremeeor 1683 Rearrange existential quantifiers. (Contributed by NM, 8-Aug-1994.)
𝑦𝜑    &   𝑥𝜓       (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓))
 
1.3.8  Equality theorems without distinct variables
 
Theorema9e 1684 At least one individual exists. This is not a theorem of free logic, which is sound in empty domains. For such a logic, we would add this theorem as an axiom of set theory (Axiom 0 of [Kunen] p. 10). In the system consisting of ax-5 1435 through ax-14 2139 and ax-17 1514, all axioms other than ax-9 1519 are believed to be theorems of free logic, although the system without ax-9 1519 is probably not complete in free logic. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
𝑥 𝑥 = 𝑦
 
Theorema9ev 1685* At least one individual exists. Weaker version of a9e 1684. (Contributed by NM, 3-Aug-2017.)
𝑥 𝑥 = 𝑦
 
Theoremax9o 1686 An implication related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
(∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
 
Theoremspimfv 1687* Specialization, using implicit substitution. Version of spim 1726 with a disjoint variable condition. See spimv 1799 for another variant. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 31-May-2019.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremchvarfv 1688* Implicit substitution of 𝑦 for 𝑥 into a theorem. Version of chvar 1745 with a disjoint variable condition. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by BJ, 31-May-2019.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremequid 1689 Identity law for equality (reflexivity). Lemma 6 of [Tarski] p. 68. This is often an axiom of equality in textbook systems, but we don't need it as an axiom since it can be proved from our other axioms.

This proof is similar to Tarski's and makes use of a dummy variable 𝑦. It also works in intuitionistic logic, unlike some other possible ways of proving this theorem. (Contributed by NM, 1-Apr-2005.)

𝑥 = 𝑥
 
Theoremnfequid 1690 Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (Contributed by NM, 13-Jan-2011.) (Revised by NM, 21-Aug-2017.)
𝑦 𝑥 = 𝑥
 
Theoremstdpc6 1691 One of the two equality axioms of standard predicate calculus, called reflexivity of equality. (The other one is stdpc7 1758.) Axiom 6 of [Mendelson] p. 95. Mendelson doesn't say why he prepended the redundant quantifier, but it was probably to be compatible with free logic (which is valid in the empty domain). (Contributed by NM, 16-Feb-2005.)
𝑥 𝑥 = 𝑥
 
Theoremequcomi 1692 Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦𝑦 = 𝑥)
 
Theoremax6evr 1693* A commuted form of a9ev 1685. The naming reflects how axioms were numbered in the Metamath Proof Explorer as of 2020 (a numbering which we eventually plan to adopt here too, but until this happens everywhere only some theorems will have it). (Contributed by BJ, 7-Dec-2020.)
𝑥 𝑦 = 𝑥
 
Theoremequcom 1694 Commutative law for equality. (Contributed by NM, 20-Aug-1993.)
(𝑥 = 𝑦𝑦 = 𝑥)
 
Theoremequcomd 1695 Deduction form of equcom 1694, symmetry of equality. For the versions for classes, see eqcom 2167 and eqcomd 2171. (Contributed by BJ, 6-Oct-2019.)
(𝜑𝑥 = 𝑦)       (𝜑𝑦 = 𝑥)
 
Theoremequcoms 1696 An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦𝜑)       (𝑦 = 𝑥𝜑)
 
Theoremequtr 1697 A transitive law for equality. (Contributed by NM, 23-Aug-1993.)
(𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))
 
Theoremequtrr 1698 A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.)
(𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))
 
Theoremequtr2 1699 A transitive law for equality. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
((𝑥 = 𝑧𝑦 = 𝑧) → 𝑥 = 𝑦)
 
Theoremequequ1 1700 An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13970
  Copyright terms: Public domain < Previous  Next >