Home | Intuitionistic Logic Explorer Theorem List (p. 17 of 140) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nexd 1601 | Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → ¬ ∃𝑥𝜓) | ||
Theorem | exbidh 1602 | Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) | ||
Theorem | albid 1603 | Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) | ||
Theorem | exbid 1604 | Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) | ||
Theorem | exsimpl 1605 | Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) | ||
Theorem | exsimpr 1606 | Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) | ||
Theorem | alexdc 1607 | Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1633. (Contributed by Jim Kingdon, 2-Jun-2018.) |
⊢ (∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑)) | ||
Theorem | 19.29 1608 | Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
⊢ ((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | 19.29r 1609 | Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.) |
⊢ ((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | 19.29r2 1610 | Variation of Theorem 19.29 of [Margaris] p. 90 with double quantification. (Contributed by NM, 3-Feb-2005.) |
⊢ ((∃𝑥∃𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) | ||
Theorem | 19.29x 1611 | Variation of Theorem 19.29 of [Margaris] p. 90 with mixed quantification. (Contributed by NM, 11-Feb-2005.) |
⊢ ((∃𝑥∀𝑦𝜑 ∧ ∀𝑥∃𝑦𝜓) → ∃𝑥∃𝑦(𝜑 ∧ 𝜓)) | ||
Theorem | 19.35-1 1612 | Forward direction of Theorem 19.35 of [Margaris] p. 90. The converse holds for classical logic but not (for all propositions) in intuitionistic logic. (Contributed by Mario Carneiro, 2-Feb-2015.) |
⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) | ||
Theorem | 19.35i 1613 | Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
⊢ ∃𝑥(𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) | ||
Theorem | 19.25 1614 | Theorem 19.25 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) → (∃𝑦∀𝑥𝜑 → ∃𝑦∃𝑥𝜓)) | ||
Theorem | 19.30dc 1615 | Theorem 19.30 of [Margaris] p. 90, with an additional decidability condition. (Contributed by Jim Kingdon, 21-Jul-2018.) |
⊢ (DECID ∃𝑥𝜓 → (∀𝑥(𝜑 ∨ 𝜓) → (∀𝑥𝜑 ∨ ∃𝑥𝜓))) | ||
Theorem | 19.43 1616 | Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.) |
⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) | ||
Theorem | 19.33b2 1617 | The antecedent provides a condition implying the converse of 19.33 1472. Compare Theorem 19.33 of [Margaris] p. 90. This variation of 19.33bdc 1618 is intuitionistically valid without a decidability condition. (Contributed by Mario Carneiro, 2-Feb-2015.) |
⊢ ((¬ ∃𝑥𝜑 ∨ ¬ ∃𝑥𝜓) → (∀𝑥(𝜑 ∨ 𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓))) | ||
Theorem | 19.33bdc 1618 | Converse of 19.33 1472 given ¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) and a decidability condition. Compare Theorem 19.33 of [Margaris] p. 90. For a version which does not require a decidability condition, see 19.33b2 1617 (Contributed by Jim Kingdon, 23-Apr-2018.) |
⊢ (DECID ∃𝑥𝜑 → (¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∀𝑥(𝜑 ∨ 𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓)))) | ||
Theorem | 19.40 1619 | Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) | ||
Theorem | 19.40-2 1620 | Theorem *11.42 in [WhiteheadRussell] p. 163. Theorem 19.40 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → (∃𝑥∃𝑦𝜑 ∧ ∃𝑥∃𝑦𝜓)) | ||
Theorem | exintrbi 1621 | Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ 𝜓))) | ||
Theorem | exintr 1622 | Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))) | ||
Theorem | alsyl 1623 | Theorem *10.3 in [WhiteheadRussell] p. 150. (Contributed by Andrew Salmon, 8-Jun-2011.) |
⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜒)) → ∀𝑥(𝜑 → 𝜒)) | ||
Theorem | hbex 1624 | If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) | ||
Theorem | nfex 1625 | If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃𝑦𝜑 | ||
Theorem | 19.2 1626 | Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. (Contributed by O'Cat, 31-Mar-2008.) |
⊢ (∀𝑥𝜑 → ∃𝑦𝜑) | ||
Theorem | i19.24 1627 | Theorem 19.24 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1612, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.) |
⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) ⇒ ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) | ||
Theorem | i19.39 1628 | Theorem 19.39 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1612, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.) |
⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) ⇒ ⊢ ((∃𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) | ||
Theorem | 19.9ht 1629 | A closed version of one direction of 19.9 1632. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → 𝜑)) | ||
Theorem | 19.9t 1630 | A closed version of 19.9 1632. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortended by Wolf Lammen, 30-Dec-2017.) |
⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | ||
Theorem | 19.9h 1631 | A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃𝑥𝜑 ↔ 𝜑) | ||
Theorem | 19.9 1632 | A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 ↔ 𝜑) | ||
Theorem | alexim 1633 | One direction of theorem 19.6 of [Margaris] p. 89. The converse holds given a decidability condition, as seen at alexdc 1607. (Contributed by Jim Kingdon, 2-Jul-2018.) |
⊢ (∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑) | ||
Theorem | exnalim 1634 | One direction of Theorem 19.14 of [Margaris] p. 90. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) |
⊢ (∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑) | ||
Theorem | exanaliim 1635 | A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) |
⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) | ||
Theorem | alexnim 1636 | A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.) |
⊢ (∀𝑥∃𝑦 ¬ 𝜑 → ¬ ∃𝑥∀𝑦𝜑) | ||
Theorem | nnal 1637 | The double negation of a universal quantification implies the universal quantification of the double negation. (Contributed by BJ, 24-Nov-2023.) |
⊢ (¬ ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ¬ 𝜑) | ||
Theorem | ax6blem 1638 | If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. This theorem doesn't use ax6b 1639 compared to hbnt 1641. (Contributed by GD, 27-Jan-2018.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | ||
Theorem | ax6b 1639 |
Quantified Negation. Axiom C5-2 of [Monk2] p.
113.
(Contributed by GD, 27-Jan-2018.) |
⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | ||
Theorem | hbn1 1640 | 𝑥 is not free in ¬ ∀𝑥𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.) |
⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | ||
Theorem | hbnt 1641 | Closed theorem version of bound-variable hypothesis builder hbn 1642. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | ||
Theorem | hbn 1642 | If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | ||
Theorem | hbnd 1643 | Deduction form of bound-variable hypothesis builder hbn 1642. (Contributed by NM, 3-Jan-2002.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓)) | ||
Theorem | nfnt 1644 | If 𝑥 is not free in 𝜑, then it is not free in ¬ 𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.) |
⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | ||
Theorem | nfnd 1645 | Deduction associated with nfnt 1644. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) | ||
Theorem | nfn 1646 | Inference associated with nfnt 1644. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥 ¬ 𝜑 | ||
Theorem | nfdc 1647 | If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥DECID 𝜑 | ||
Theorem | modal-5 1648 | The analog in our predicate calculus of axiom 5 of modal logic S5. (Contributed by NM, 5-Oct-2005.) |
⊢ (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑) | ||
Theorem | 19.9d 1649 | A deduction version of one direction of 19.9 1632. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ (𝜓 → Ⅎ𝑥𝜑) ⇒ ⊢ (𝜓 → (∃𝑥𝜑 → 𝜑)) | ||
Theorem | 19.9hd 1650 | A deduction version of one direction of 19.9 1632. This is an older variation of this theorem; new proofs should use 19.9d 1649. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜓 → (𝜑 → ∀𝑥𝜑)) ⇒ ⊢ (𝜓 → (∃𝑥𝜑 → 𝜑)) | ||
Theorem | excomim 1651 | One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) | ||
Theorem | excom 1652 | Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) | ||
Theorem | 19.12 1653 | Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! (Contributed by NM, 5-Aug-1993.) |
⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) | ||
Theorem | 19.19 1654 | Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝜑 ↔ ∃𝑥𝜓)) | ||
Theorem | 19.21-2 1655 | Theorem 19.21 of [Margaris] p. 90 but with 2 quantifiers. (Contributed by NM, 4-Feb-2005.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥∀𝑦𝜓)) | ||
Theorem | nf2 1656 | An alternate definition of df-nf 1449, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | ||
Theorem | nf3 1657 | An alternate definition of df-nf 1449. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) | ||
Theorem | nf4dc 1658 | Variable 𝑥 is effectively not free in 𝜑 iff 𝜑 is always true or always false, given a decidability condition. The reverse direction, nf4r 1659, holds for all propositions. (Contributed by Jim Kingdon, 21-Jul-2018.) |
⊢ (DECID ∃𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))) | ||
Theorem | nf4r 1659 | If 𝜑 is always true or always false, then variable 𝑥 is effectively not free in 𝜑. The converse holds given a decidability condition, as seen at nf4dc 1658. (Contributed by Jim Kingdon, 21-Jul-2018.) |
⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑) | ||
Theorem | 19.36i 1660 | Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
⊢ Ⅎ𝑥𝜓 & ⊢ ∃𝑥(𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | 19.36-1 1661 | Closed form of 19.36i 1660. One direction of Theorem 19.36 of [Margaris] p. 90. The converse holds in classical logic, but does not hold (for all propositions) in intuitionistic logic. (Contributed by Jim Kingdon, 20-Jun-2018.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | 19.37-1 1662 | One direction of Theorem 19.37 of [Margaris] p. 90. The converse holds in classical logic but not, in general, here. (Contributed by Jim Kingdon, 21-Jun-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) | ||
Theorem | 19.37aiv 1663* | Inference from Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ ∃𝑥(𝜑 → 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | 19.38 1664 | Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | ||
Theorem | 19.23t 1665 | Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | ||
Theorem | 19.23 1666 | Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | ||
Theorem | 19.32dc 1667 | Theorem 19.32 of [Margaris] p. 90, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (DECID 𝜑 → (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))) | ||
Theorem | 19.32r 1668 | One direction of Theorem 19.32 of [Margaris] p. 90. The converse holds if 𝜑 is decidable, as seen at 19.32dc 1667. (Contributed by Jim Kingdon, 28-Jul-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ((𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) | ||
Theorem | 19.31r 1669 | One direction of Theorem 19.31 of [Margaris] p. 90. The converse holds in classical logic, but not intuitionistic logic. (Contributed by Jim Kingdon, 28-Jul-2018.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ ((∀𝑥𝜑 ∨ 𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) | ||
Theorem | 19.44 1670 | Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ 𝜓)) | ||
Theorem | 19.45 1671 | Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) | ||
Theorem | 19.34 1672 | Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑 ∨ 𝜓)) | ||
Theorem | 19.41h 1673 | Theorem 19.41 of [Margaris] p. 90. New proofs should use 19.41 1674 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) | ||
Theorem | 19.41 1674 | Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) | ||
Theorem | 19.42h 1675 | Theorem 19.42 of [Margaris] p. 90. New proofs should use 19.42 1676 instead. (Contributed by NM, 18-Aug-1993.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | ||
Theorem | 19.42 1676 | Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | ||
Theorem | excom13 1677 | Swap 1st and 3rd existential quantifiers. (Contributed by NM, 9-Mar-1995.) |
⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑧∃𝑦∃𝑥𝜑) | ||
Theorem | exrot3 1678 | Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.) |
⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) | ||
Theorem | exrot4 1679 | Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.) |
⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) | ||
Theorem | nexr 1680 | Inference from 19.8a 1578. (Contributed by Jeff Hankins, 26-Jul-2009.) |
⊢ ¬ ∃𝑥𝜑 ⇒ ⊢ ¬ 𝜑 | ||
Theorem | exan 1681 | Place a conjunct in the scope of an existential quantifier. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (∃𝑥𝜑 ∧ 𝜓) ⇒ ⊢ ∃𝑥(𝜑 ∧ 𝜓) | ||
Theorem | hbexd 1682 | Deduction form of bound-variable hypothesis builder hbex 1624. (Contributed by NM, 2-Jan-2002.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → (∃𝑦𝜓 → ∀𝑥∃𝑦𝜓)) | ||
Theorem | eeor 1683 | Rearrange existential quantifiers. (Contributed by NM, 8-Aug-1994.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) | ||
Theorem | a9e 1684 | At least one individual exists. This is not a theorem of free logic, which is sound in empty domains. For such a logic, we would add this theorem as an axiom of set theory (Axiom 0 of [Kunen] p. 10). In the system consisting of ax-5 1435 through ax-14 2139 and ax-17 1514, all axioms other than ax-9 1519 are believed to be theorems of free logic, although the system without ax-9 1519 is probably not complete in free logic. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
⊢ ∃𝑥 𝑥 = 𝑦 | ||
Theorem | a9ev 1685* | At least one individual exists. Weaker version of a9e 1684. (Contributed by NM, 3-Aug-2017.) |
⊢ ∃𝑥 𝑥 = 𝑦 | ||
Theorem | ax9o 1686 | An implication related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) | ||
Theorem | spimfv 1687* | Specialization, using implicit substitution. Version of spim 1726 with a disjoint variable condition. See spimv 1799 for another variant. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 31-May-2019.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | chvarfv 1688* | Implicit substitution of 𝑦 for 𝑥 into a theorem. Version of chvar 1745 with a disjoint variable condition. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by BJ, 31-May-2019.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | equid 1689 |
Identity law for equality (reflexivity). Lemma 6 of [Tarski] p. 68.
This is often an axiom of equality in textbook systems, but we don't
need it as an axiom since it can be proved from our other axioms.
This proof is similar to Tarski's and makes use of a dummy variable 𝑦. It also works in intuitionistic logic, unlike some other possible ways of proving this theorem. (Contributed by NM, 1-Apr-2005.) |
⊢ 𝑥 = 𝑥 | ||
Theorem | nfequid 1690 | Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (Contributed by NM, 13-Jan-2011.) (Revised by NM, 21-Aug-2017.) |
⊢ Ⅎ𝑦 𝑥 = 𝑥 | ||
Theorem | stdpc6 1691 | One of the two equality axioms of standard predicate calculus, called reflexivity of equality. (The other one is stdpc7 1758.) Axiom 6 of [Mendelson] p. 95. Mendelson doesn't say why he prepended the redundant quantifier, but it was probably to be compatible with free logic (which is valid in the empty domain). (Contributed by NM, 16-Feb-2005.) |
⊢ ∀𝑥 𝑥 = 𝑥 | ||
Theorem | equcomi 1692 | Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | ||
Theorem | ax6evr 1693* | A commuted form of a9ev 1685. The naming reflects how axioms were numbered in the Metamath Proof Explorer as of 2020 (a numbering which we eventually plan to adopt here too, but until this happens everywhere only some theorems will have it). (Contributed by BJ, 7-Dec-2020.) |
⊢ ∃𝑥 𝑦 = 𝑥 | ||
Theorem | equcom 1694 | Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | ||
Theorem | equcomd 1695 | Deduction form of equcom 1694, symmetry of equality. For the versions for classes, see eqcom 2167 and eqcomd 2171. (Contributed by BJ, 6-Oct-2019.) |
⊢ (𝜑 → 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → 𝑦 = 𝑥) | ||
Theorem | equcoms 1696 | An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (𝑦 = 𝑥 → 𝜑) | ||
Theorem | equtr 1697 | A transitive law for equality. (Contributed by NM, 23-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | ||
Theorem | equtrr 1698 | A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | ||
Theorem | equtr2 1699 | A transitive law for equality. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑦) | ||
Theorem | equequ1 1700 | An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |