![]() |
Intuitionistic Logic Explorer Theorem List (p. 17 of 130) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | i19.24 1601 | Theorem 19.24 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1586, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.) |
⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) ⇒ ⊢ ((∀𝑥𝜑 → ∀𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) | ||
Theorem | i19.39 1602 | Theorem 19.39 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1586, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.) |
⊢ ((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) ⇒ ⊢ ((∃𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑 → 𝜓)) | ||
Theorem | 19.9ht 1603 | A closed version of one direction of 19.9 1606. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 → 𝜑)) | ||
Theorem | 19.9t 1604 | A closed version of 19.9 1606. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortended by Wolf Lammen, 30-Dec-2017.) |
⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | ||
Theorem | 19.9h 1605 | A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃𝑥𝜑 ↔ 𝜑) | ||
Theorem | 19.9 1606 | A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 ↔ 𝜑) | ||
Theorem | alexim 1607 | One direction of theorem 19.6 of [Margaris] p. 89. The converse holds given a decidability condition, as seen at alexdc 1581. (Contributed by Jim Kingdon, 2-Jul-2018.) |
⊢ (∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑) | ||
Theorem | exnalim 1608 | One direction of Theorem 19.14 of [Margaris] p. 90. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) |
⊢ (∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑) | ||
Theorem | exanaliim 1609 | A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.) |
⊢ (∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑 → 𝜓)) | ||
Theorem | alexnim 1610 | A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.) |
⊢ (∀𝑥∃𝑦 ¬ 𝜑 → ¬ ∃𝑥∀𝑦𝜑) | ||
Theorem | ax6blem 1611 | If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. This theorem doesn't use ax6b 1612 compared to hbnt 1614. (Contributed by GD, 27-Jan-2018.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | ||
Theorem | ax6b 1612 |
Quantified Negation. Axiom C5-2 of [Monk2] p.
113.
(Contributed by GD, 27-Jan-2018.) |
⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | ||
Theorem | hbn1 1613 | 𝑥 is not free in ¬ ∀𝑥𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.) |
⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | ||
Theorem | hbnt 1614 | Closed theorem version of bound-variable hypothesis builder hbn 1615. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | ||
Theorem | hbn 1615 | If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) | ||
Theorem | hbnd 1616 | Deduction form of bound-variable hypothesis builder hbn 1615. (Contributed by NM, 3-Jan-2002.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓)) | ||
Theorem | nfnt 1617 | If 𝑥 is not free in 𝜑, then it is not free in ¬ 𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.) |
⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑) | ||
Theorem | nfnd 1618 | Deduction associated with nfnt 1617. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) | ||
Theorem | nfn 1619 | Inference associated with nfnt 1617. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥 ¬ 𝜑 | ||
Theorem | nfdc 1620 | If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥DECID 𝜑 | ||
Theorem | modal-5 1621 | The analog in our predicate calculus of axiom 5 of modal logic S5. (Contributed by NM, 5-Oct-2005.) |
⊢ (¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑) | ||
Theorem | 19.9d 1622 | A deduction version of one direction of 19.9 1606. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ (𝜓 → Ⅎ𝑥𝜑) ⇒ ⊢ (𝜓 → (∃𝑥𝜑 → 𝜑)) | ||
Theorem | 19.9hd 1623 | A deduction version of one direction of 19.9 1606. This is an older variation of this theorem; new proofs should use 19.9d 1622. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜓 → (𝜑 → ∀𝑥𝜑)) ⇒ ⊢ (𝜓 → (∃𝑥𝜑 → 𝜑)) | ||
Theorem | excomim 1624 | One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) | ||
Theorem | excom 1625 | Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑦∃𝑥𝜑) | ||
Theorem | 19.12 1626 | Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! (Contributed by NM, 5-Aug-1993.) |
⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) | ||
Theorem | 19.19 1627 | Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (𝜑 ↔ ∃𝑥𝜓)) | ||
Theorem | 19.21-2 1628 | Theorem 19.21 of [Margaris] p. 90 but with 2 quantifiers. (Contributed by NM, 4-Feb-2005.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥∀𝑦𝜓)) | ||
Theorem | nf2 1629 | An alternate definition of df-nf 1420, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | ||
Theorem | nf3 1630 | An alternate definition of df-nf 1420. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) | ||
Theorem | nf4dc 1631 | Variable 𝑥 is effectively not free in 𝜑 iff 𝜑 is always true or always false, given a decidability condition. The reverse direction, nf4r 1632, holds for all propositions. (Contributed by Jim Kingdon, 21-Jul-2018.) |
⊢ (DECID ∃𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))) | ||
Theorem | nf4r 1632 | If 𝜑 is always true or always false, then variable 𝑥 is effectively not free in 𝜑. The converse holds given a decidability condition, as seen at nf4dc 1631. (Contributed by Jim Kingdon, 21-Jul-2018.) |
⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑) | ||
Theorem | 19.36i 1633 | Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
⊢ Ⅎ𝑥𝜓 & ⊢ ∃𝑥(𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | 19.36-1 1634 | Closed form of 19.36i 1633. One direction of Theorem 19.36 of [Margaris] p. 90. The converse holds in classical logic, but does not hold (for all propositions) in intuitionistic logic. (Contributed by Jim Kingdon, 20-Jun-2018.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | 19.37-1 1635 | One direction of Theorem 19.37 of [Margaris] p. 90. The converse holds in classical logic but not, in general, here. (Contributed by Jim Kingdon, 21-Jun-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓)) | ||
Theorem | 19.37aiv 1636* | Inference from Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ ∃𝑥(𝜑 → 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | 19.38 1637 | Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | ||
Theorem | 19.23t 1638 | Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | ||
Theorem | 19.23 1639 | Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | ||
Theorem | 19.32dc 1640 | Theorem 19.32 of [Margaris] p. 90, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (DECID 𝜑 → (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓))) | ||
Theorem | 19.32r 1641 | One direction of Theorem 19.32 of [Margaris] p. 90. The converse holds if 𝜑 is decidable, as seen at 19.32dc 1640. (Contributed by Jim Kingdon, 28-Jul-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ((𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) | ||
Theorem | 19.31r 1642 | One direction of Theorem 19.31 of [Margaris] p. 90. The converse holds in classical logic, but not intuitionistic logic. (Contributed by Jim Kingdon, 28-Jul-2018.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ ((∀𝑥𝜑 ∨ 𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) | ||
Theorem | 19.44 1643 | Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ 𝜓)) | ||
Theorem | 19.45 1644 | Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓)) | ||
Theorem | 19.34 1645 | Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ ((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑 ∨ 𝜓)) | ||
Theorem | 19.41h 1646 | Theorem 19.41 of [Margaris] p. 90. New proofs should use 19.41 1647 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) | ||
Theorem | 19.41 1647 | Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓)) | ||
Theorem | 19.42h 1648 | Theorem 19.42 of [Margaris] p. 90. New proofs should use 19.42 1649 instead. (Contributed by NM, 18-Aug-1993.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | ||
Theorem | 19.42 1649 | Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | ||
Theorem | excom13 1650 | Swap 1st and 3rd existential quantifiers. (Contributed by NM, 9-Mar-1995.) |
⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑧∃𝑦∃𝑥𝜑) | ||
Theorem | exrot3 1651 | Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.) |
⊢ (∃𝑥∃𝑦∃𝑧𝜑 ↔ ∃𝑦∃𝑧∃𝑥𝜑) | ||
Theorem | exrot4 1652 | Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.) |
⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑧∃𝑤∃𝑥∃𝑦𝜑) | ||
Theorem | nexr 1653 | Inference from 19.8a 1552. (Contributed by Jeff Hankins, 26-Jul-2009.) |
⊢ ¬ ∃𝑥𝜑 ⇒ ⊢ ¬ 𝜑 | ||
Theorem | exan 1654 | Place a conjunct in the scope of an existential quantifier. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (∃𝑥𝜑 ∧ 𝜓) ⇒ ⊢ ∃𝑥(𝜑 ∧ 𝜓) | ||
Theorem | hbexd 1655 | Deduction form of bound-variable hypothesis builder hbex 1598. (Contributed by NM, 2-Jan-2002.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → (∃𝑦𝜓 → ∀𝑥∃𝑦𝜓)) | ||
Theorem | eeor 1656 | Rearrange existential quantifiers. (Contributed by NM, 8-Aug-1994.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) | ||
Theorem | a9e 1657 | At least one individual exists. This is not a theorem of free logic, which is sound in empty domains. For such a logic, we would add this theorem as an axiom of set theory (Axiom 0 of [Kunen] p. 10). In the system consisting of ax-5 1406 through ax-14 1475 and ax-17 1489, all axioms other than ax-9 1494 are believed to be theorems of free logic, although the system without ax-9 1494 is probably not complete in free logic. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
⊢ ∃𝑥 𝑥 = 𝑦 | ||
Theorem | a9ev 1658* | At least one individual exists. Weaker version of a9e 1657. (Contributed by NM, 3-Aug-2017.) |
⊢ ∃𝑥 𝑥 = 𝑦 | ||
Theorem | ax9o 1659 | An implication related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) | ||
Theorem | equid 1660 |
Identity law for equality (reflexivity). Lemma 6 of [Tarski] p. 68.
This is often an axiom of equality in textbook systems, but we don't
need it as an axiom since it can be proved from our other axioms.
This proof is similar to Tarski's and makes use of a dummy variable 𝑦. It also works in intuitionistic logic, unlike some other possible ways of proving this theorem. (Contributed by NM, 1-Apr-2005.) |
⊢ 𝑥 = 𝑥 | ||
Theorem | nfequid 1661 | Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (Contributed by NM, 13-Jan-2011.) (Revised by NM, 21-Aug-2017.) |
⊢ Ⅎ𝑦 𝑥 = 𝑥 | ||
Theorem | stdpc6 1662 | One of the two equality axioms of standard predicate calculus, called reflexivity of equality. (The other one is stdpc7 1726.) Axiom 6 of [Mendelson] p. 95. Mendelson doesn't say why he prepended the redundant quantifier, but it was probably to be compatible with free logic (which is valid in the empty domain). (Contributed by NM, 16-Feb-2005.) |
⊢ ∀𝑥 𝑥 = 𝑥 | ||
Theorem | equcomi 1663 | Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | ||
Theorem | ax6evr 1664* | A commuted form of a9ev 1658. The naming reflects how axioms were numbered in the Metamath Proof Explorer as of 2020 (a numbering which we eventually plan to adopt here too, but until this happens everywhere only some theorems will have it). (Contributed by BJ, 7-Dec-2020.) |
⊢ ∃𝑥 𝑦 = 𝑥 | ||
Theorem | equcom 1665 | Commutative law for equality. (Contributed by NM, 20-Aug-1993.) |
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | ||
Theorem | equcomd 1666 | Deduction form of equcom 1665, symmetry of equality. For the versions for classes, see eqcom 2117 and eqcomd 2120. (Contributed by BJ, 6-Oct-2019.) |
⊢ (𝜑 → 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → 𝑦 = 𝑥) | ||
Theorem | equcoms 1667 | An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (𝑦 = 𝑥 → 𝜑) | ||
Theorem | equtr 1668 | A transitive law for equality. (Contributed by NM, 23-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | ||
Theorem | equtrr 1669 | A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | ||
Theorem | equtr2 1670 | A transitive law for equality. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑦) | ||
Theorem | equequ1 1671 | An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | ||
Theorem | equequ2 1672 | An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) | ||
Theorem | elequ1 1673 | An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧)) | ||
Theorem | elequ2 1674 | An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)) | ||
Theorem | ax11i 1675 | Inference that has ax-11 1467 (without ∀𝑦) as its conclusion and doesn't require ax-10 1466, ax-11 1467, or ax-12 1472 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. Proof similar to Lemma 16 of [Tarski] p. 70. (Contributed by NM, 20-May-2008.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | ax10o 1676 |
Show that ax-10o 1677 can be derived from ax-10 1466. An open problem is
whether this theorem can be derived from ax-10 1466 and the others when
ax-11 1467 is replaced with ax-11o 1777. See theorem ax10 1678
for the
rederivation of ax-10 1466 from ax10o 1676.
Normally, ax10o 1676 should be used rather than ax-10o 1677, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
Axiom | ax-10o 1677 |
Axiom ax-10o 1677 ("o" for "old") was the
original version of ax-10 1466,
before it was discovered (in May 2008) that the shorter ax-10 1466 could
replace it. It appears as Axiom scheme C11' in [Megill] p. 448 (p. 16 of
the preprint).
This axiom is redundant, as shown by theorem ax10o 1676. Normally, ax10o 1676 should be used rather than ax-10o 1677, except by theorems specifically studying the latter's properties. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
Theorem | ax10 1678 |
Rederivation of ax-10 1466 from original version ax-10o 1677. See theorem
ax10o 1676 for the derivation of ax-10o 1677 from ax-10 1466.
This theorem should not be referenced in any proof. Instead, use ax-10 1466 above so that uses of ax-10 1466 can be more easily identified. (Contributed by NM, 16-May-2008.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | hbae 1679 | All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | ||
Theorem | nfae 1680 | All variables are effectively bound in an identical variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | ||
Theorem | hbaes 1681 | Rule that applies hbae 1679 to antecedent. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑧∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) | ||
Theorem | hbnae 1682 | All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 5-Aug-1993.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | nfnae 1683 | All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | ||
Theorem | hbnaes 1684 | Rule that applies hbnae 1682 to antecedent. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) | ||
Theorem | naecoms 1685 | A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
Theorem | equs4 1686 | Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | equsalh 1687 | A useful equivalence related to substitution. New proofs should use equsal 1688 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsal 1688 | A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsex 1689 | A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | equsexd 1690 | Deduction form of equsex 1689. (Contributed by Jim Kingdon, 29-Dec-2017.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜒)) | ||
Theorem | dral1 1691 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
Theorem | dral2 1692 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) | ||
Theorem | drex2 1693 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓)) | ||
Theorem | drnf1 1694 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) | ||
Theorem | drnf2 1695 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓)) | ||
Theorem | spimth 1696 | Closed theorem form of spim 1699. (Contributed by NM, 15-Jan-2008.) (New usage is discouraged.) |
⊢ (∀𝑥((𝜓 → ∀𝑥𝜓) ∧ (𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | spimt 1697 | Closed theorem form of spim 1699. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.) |
⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | spimh 1698 | Specialization, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. The spim 1699 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 8-May-2008.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | spim 1699 | Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 1699 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜓) | ||
Theorem | spimeh 1700 | Existential introduction, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by NM, 3-Feb-2015.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |