 Home Intuitionistic Logic ExplorerTheorem List (p. 17 of 130) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1601-1700   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremi19.24 1601 Theorem 19.24 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1586, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.)
((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))       ((∀𝑥𝜑 → ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))

Theoremi19.39 1602 Theorem 19.39 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1586, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.)
((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))       ((∃𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))

Theorem19.9ht 1603 A closed version of one direction of 19.9 1606. (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑𝜑))

Theorem19.9t 1604 A closed version of 19.9 1606. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortended by Wolf Lammen, 30-Dec-2017.)
(Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))

Theorem19.9h 1605 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.)
(𝜑 → ∀𝑥𝜑)       (∃𝑥𝜑𝜑)

Theorem19.9 1606 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
𝑥𝜑       (∃𝑥𝜑𝜑)

Theoremalexim 1607 One direction of theorem 19.6 of [Margaris] p. 89. The converse holds given a decidability condition, as seen at alexdc 1581. (Contributed by Jim Kingdon, 2-Jul-2018.)
(∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑)

Theoremexnalim 1608 One direction of Theorem 19.14 of [Margaris] p. 90. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
(∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑)

Theoremexanaliim 1609 A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
(∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑𝜓))

Theoremalexnim 1610 A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.)
(∀𝑥𝑦 ¬ 𝜑 → ¬ ∃𝑥𝑦𝜑)

Theoremax6blem 1611 If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. This theorem doesn't use ax6b 1612 compared to hbnt 1614. (Contributed by GD, 27-Jan-2018.)
(𝜑 → ∀𝑥𝜑)       𝜑 → ∀𝑥 ¬ 𝜑)

Theoremax6b 1612 Quantified Negation. Axiom C5-2 of [Monk2] p. 113.

(Contributed by GD, 27-Jan-2018.)

(¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)

Theoremhbn1 1613 𝑥 is not free in ¬ ∀𝑥𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.)
(¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)

Theoremhbnt 1614 Closed theorem version of bound-variable hypothesis builder hbn 1615. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))

Theoremhbn 1615 If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)       𝜑 → ∀𝑥 ¬ 𝜑)

Theoremhbnd 1616 Deduction form of bound-variable hypothesis builder hbn 1615. (Contributed by NM, 3-Jan-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓))

Theoremnfnt 1617 If 𝑥 is not free in 𝜑, then it is not free in ¬ 𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.)
(Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)

Theoremnfnd 1618 Deduction associated with nfnt 1617. (Contributed by Mario Carneiro, 24-Sep-2016.)
(𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥 ¬ 𝜓)

Theoremnfn 1619 Inference associated with nfnt 1617. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑       𝑥 ¬ 𝜑

Theoremnfdc 1620 If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.)
𝑥𝜑       𝑥DECID 𝜑

Theoremmodal-5 1621 The analog in our predicate calculus of axiom 5 of modal logic S5. (Contributed by NM, 5-Oct-2005.)
(¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑)

Theorem19.9d 1622 A deduction version of one direction of 19.9 1606. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
(𝜓 → Ⅎ𝑥𝜑)       (𝜓 → (∃𝑥𝜑𝜑))

Theorem19.9hd 1623 A deduction version of one direction of 19.9 1606. This is an older variation of this theorem; new proofs should use 19.9d 1622. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝜓 → (𝜑 → ∀𝑥𝜑))       (𝜓 → (∃𝑥𝜑𝜑))

Theoremexcomim 1624 One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)

Theoremexcom 1625 Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)

Theorem19.12 1626 Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)

Theorem19.19 1627 Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∃𝑥𝜓))

Theorem19.21-2 1628 Theorem 19.21 of [Margaris] p. 90 but with 2 quantifiers. (Contributed by NM, 4-Feb-2005.)
𝑥𝜑    &   𝑦𝜑       (∀𝑥𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝑦𝜓))

Theoremnf2 1629 An alternate definition of df-nf 1420, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.)
(Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))

Theoremnf3 1630 An alternate definition of df-nf 1420. (Contributed by Mario Carneiro, 24-Sep-2016.)
(Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑𝜑))

Theoremnf4dc 1631 Variable 𝑥 is effectively not free in 𝜑 iff 𝜑 is always true or always false, given a decidability condition. The reverse direction, nf4r 1632, holds for all propositions. (Contributed by Jim Kingdon, 21-Jul-2018.)
(DECID𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)))

Theoremnf4r 1632 If 𝜑 is always true or always false, then variable 𝑥 is effectively not free in 𝜑. The converse holds given a decidability condition, as seen at nf4dc 1631. (Contributed by Jim Kingdon, 21-Jul-2018.)
((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑)

Theorem19.36i 1633 Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
𝑥𝜓    &   𝑥(𝜑𝜓)       (∀𝑥𝜑𝜓)

Theorem19.36-1 1634 Closed form of 19.36i 1633. One direction of Theorem 19.36 of [Margaris] p. 90. The converse holds in classical logic, but does not hold (for all propositions) in intuitionistic logic. (Contributed by Jim Kingdon, 20-Jun-2018.)
𝑥𝜓       (∃𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))

Theorem19.37-1 1635 One direction of Theorem 19.37 of [Margaris] p. 90. The converse holds in classical logic but not, in general, here. (Contributed by Jim Kingdon, 21-Jun-2018.)
𝑥𝜑       (∃𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓))

Theorem19.37aiv 1636* Inference from Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
𝑥(𝜑𝜓)       (𝜑 → ∃𝑥𝜓)

Theorem19.38 1637 Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))

Theorem19.23t 1638 Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
(Ⅎ𝑥𝜓 → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))

Theorem19.23 1639 Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜓       (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))

Theorem19.32dc 1640 Theorem 19.32 of [Margaris] p. 90, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.)
𝑥𝜑       (DECID 𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)))

Theorem19.32r 1641 One direction of Theorem 19.32 of [Margaris] p. 90. The converse holds if 𝜑 is decidable, as seen at 19.32dc 1640. (Contributed by Jim Kingdon, 28-Jul-2018.)
𝑥𝜑       ((𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))

Theorem19.31r 1642 One direction of Theorem 19.31 of [Margaris] p. 90. The converse holds in classical logic, but not intuitionistic logic. (Contributed by Jim Kingdon, 28-Jul-2018.)
𝑥𝜓       ((∀𝑥𝜑𝜓) → ∀𝑥(𝜑𝜓))

Theorem19.44 1643 Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜓       (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))

Theorem19.45 1644 Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∃𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))

Theorem19.34 1645 Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))

Theorem19.41h 1646 Theorem 19.41 of [Margaris] p. 90. New proofs should use 19.41 1647 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)       (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))

Theorem19.41 1647 Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
𝑥𝜓       (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))

Theorem19.42h 1648 Theorem 19.42 of [Margaris] p. 90. New proofs should use 19.42 1649 instead. (Contributed by NM, 18-Aug-1993.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)       (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))

Theorem19.42 1649 Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
𝑥𝜑       (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))

Theoremexcom13 1650 Swap 1st and 3rd existential quantifiers. (Contributed by NM, 9-Mar-1995.)
(∃𝑥𝑦𝑧𝜑 ↔ ∃𝑧𝑦𝑥𝜑)

Theoremexrot3 1651 Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.)
(∃𝑥𝑦𝑧𝜑 ↔ ∃𝑦𝑧𝑥𝜑)

Theoremexrot4 1652 Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.)
(∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑧𝑤𝑥𝑦𝜑)

Theoremnexr 1653 Inference from 19.8a 1552. (Contributed by Jeff Hankins, 26-Jul-2009.)
¬ ∃𝑥𝜑        ¬ 𝜑

Theoremexan 1654 Place a conjunct in the scope of an existential quantifier. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∃𝑥𝜑𝜓)       𝑥(𝜑𝜓)

Theoremhbexd 1655 Deduction form of bound-variable hypothesis builder hbex 1598. (Contributed by NM, 2-Jan-2002.)
(𝜑 → ∀𝑦𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → (∃𝑦𝜓 → ∀𝑥𝑦𝜓))

Theoremeeor 1656 Rearrange existential quantifiers. (Contributed by NM, 8-Aug-1994.)
𝑦𝜑    &   𝑥𝜓       (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓))

1.3.8  Equality theorems without distinct variables

Theorema9e 1657 At least one individual exists. This is not a theorem of free logic, which is sound in empty domains. For such a logic, we would add this theorem as an axiom of set theory (Axiom 0 of [Kunen] p. 10). In the system consisting of ax-5 1406 through ax-14 1475 and ax-17 1489, all axioms other than ax-9 1494 are believed to be theorems of free logic, although the system without ax-9 1494 is probably not complete in free logic. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
𝑥 𝑥 = 𝑦

Theorema9ev 1658* At least one individual exists. Weaker version of a9e 1657. (Contributed by NM, 3-Aug-2017.)
𝑥 𝑥 = 𝑦

Theoremax9o 1659 An implication related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
(∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)

Theoremequid 1660 Identity law for equality (reflexivity). Lemma 6 of [Tarski] p. 68. This is often an axiom of equality in textbook systems, but we don't need it as an axiom since it can be proved from our other axioms.

This proof is similar to Tarski's and makes use of a dummy variable 𝑦. It also works in intuitionistic logic, unlike some other possible ways of proving this theorem. (Contributed by NM, 1-Apr-2005.)

𝑥 = 𝑥

Theoremnfequid 1661 Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (Contributed by NM, 13-Jan-2011.) (Revised by NM, 21-Aug-2017.)
𝑦 𝑥 = 𝑥

Theoremstdpc6 1662 One of the two equality axioms of standard predicate calculus, called reflexivity of equality. (The other one is stdpc7 1726.) Axiom 6 of [Mendelson] p. 95. Mendelson doesn't say why he prepended the redundant quantifier, but it was probably to be compatible with free logic (which is valid in the empty domain). (Contributed by NM, 16-Feb-2005.)
𝑥 𝑥 = 𝑥

Theoremequcomi 1663 Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦𝑦 = 𝑥)

Theoremax6evr 1664* A commuted form of a9ev 1658. The naming reflects how axioms were numbered in the Metamath Proof Explorer as of 2020 (a numbering which we eventually plan to adopt here too, but until this happens everywhere only some theorems will have it). (Contributed by BJ, 7-Dec-2020.)
𝑥 𝑦 = 𝑥

Theoremequcom 1665 Commutative law for equality. (Contributed by NM, 20-Aug-1993.)
(𝑥 = 𝑦𝑦 = 𝑥)

Theoremequcomd 1666 Deduction form of equcom 1665, symmetry of equality. For the versions for classes, see eqcom 2117 and eqcomd 2120. (Contributed by BJ, 6-Oct-2019.)
(𝜑𝑥 = 𝑦)       (𝜑𝑦 = 𝑥)

Theoremequcoms 1667 An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦𝜑)       (𝑦 = 𝑥𝜑)

Theoremequtr 1668 A transitive law for equality. (Contributed by NM, 23-Aug-1993.)
(𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))

Theoremequtrr 1669 A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.)
(𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))

Theoremequtr2 1670 A transitive law for equality. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
((𝑥 = 𝑧𝑦 = 𝑧) → 𝑥 = 𝑦)

Theoremequequ1 1671 An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))

Theoremequequ2 1672 An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))

Theoremelequ1 1673 An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))

Theoremelequ2 1674 An identity law for the non-logical predicate. (Contributed by NM, 5-Aug-1993.)
(𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))

Theoremax11i 1675 Inference that has ax-11 1467 (without 𝑦) as its conclusion and doesn't require ax-10 1466, ax-11 1467, or ax-12 1472 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. Proof similar to Lemma 16 of [Tarski] p. 70. (Contributed by NM, 20-May-2008.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   (𝜓 → ∀𝑥𝜓)       (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))

1.3.9  Axioms ax-10 and ax-11

Theoremax10o 1676 Show that ax-10o 1677 can be derived from ax-10 1466. An open problem is whether this theorem can be derived from ax-10 1466 and the others when ax-11 1467 is replaced with ax-11o 1777. See theorem ax10 1678 for the rederivation of ax-10 1466 from ax10o 1676.

Normally, ax10o 1676 should be used rather than ax-10o 1677, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.)

(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))

Axiomax-10o 1677 Axiom ax-10o 1677 ("o" for "old") was the original version of ax-10 1466, before it was discovered (in May 2008) that the shorter ax-10 1466 could replace it. It appears as Axiom scheme C11' in [Megill] p. 448 (p. 16 of the preprint).

This axiom is redundant, as shown by theorem ax10o 1676.

Normally, ax10o 1676 should be used rather than ax-10o 1677, except by theorems specifically studying the latter's properties. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)

(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))

Theoremax10 1678 Rederivation of ax-10 1466 from original version ax-10o 1677. See theorem ax10o 1676 for the derivation of ax-10o 1677 from ax-10 1466.

This theorem should not be referenced in any proof. Instead, use ax-10 1466 above so that uses of ax-10 1466 can be more easily identified. (Contributed by NM, 16-May-2008.) (New usage is discouraged.)

(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)

Theoremhbae 1679 All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)

Theoremnfae 1680 All variables are effectively bound in an identical variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑧𝑥 𝑥 = 𝑦

Theoremhbaes 1681 Rule that applies hbae 1679 to antecedent. (Contributed by NM, 5-Aug-1993.)
(∀𝑧𝑥 𝑥 = 𝑦𝜑)       (∀𝑥 𝑥 = 𝑦𝜑)

Theoremhbnae 1682 All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 5-Aug-1993.)
(¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)

Theoremnfnae 1683 All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑧 ¬ ∀𝑥 𝑥 = 𝑦

Theoremhbnaes 1684 Rule that applies hbnae 1682 to antecedent. (Contributed by NM, 5-Aug-1993.)
(∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦𝜑)       (¬ ∀𝑥 𝑥 = 𝑦𝜑)

Theoremnaecoms 1685 A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.)
(¬ ∀𝑥 𝑥 = 𝑦𝜑)       (¬ ∀𝑦 𝑦 = 𝑥𝜑)

Theoremequs4 1686 Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.)
(∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))

Theoremequsalh 1687 A useful equivalence related to substitution. New proofs should use equsal 1688 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)

Theoremequsal 1688 A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)

Theoremequsex 1689 A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)

Theoremequsexd 1690 Deduction form of equsex 1689. (Contributed by Jim Kingdon, 29-Dec-2017.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))       (𝜑 → (∃𝑥(𝑥 = 𝑦𝜓) ↔ 𝜒))

Theoremdral1 1691 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))

Theoremdral2 1692 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓))

Theoremdrex2 1693 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓))

Theoremdrnf1 1694 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓))

Theoremdrnf2 1695 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.)
(∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓))

Theoremspimth 1696 Closed theorem form of spim 1699. (Contributed by NM, 15-Jan-2008.) (New usage is discouraged.)
(∀𝑥((𝜓 → ∀𝑥𝜓) ∧ (𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))

Theoremspimt 1697 Closed theorem form of spim 1699. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.)
((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓))) → (∀𝑥𝜑𝜓))

Theoremspimh 1698 Specialization, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. The spim 1699 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 8-May-2008.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)

Theoremspim 1699 Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 1699 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)

Theoremspimeh 1700 Existential introduction, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by NM, 3-Feb-2015.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝜑 → ∃𝑥𝜓)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-12941
 Copyright terms: Public domain < Previous  Next >