HomeHome Intuitionistic Logic Explorer
Theorem List (p. 17 of 156)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1601-1700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
1.3.7  The existential quantifier
 
Theorem19.8a 1601 If a wff is true, then it is true for at least one instance. Special case of Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∃𝑥𝜑)
 
Theorem19.8ad 1602 If a wff is true, it is true for at least one instance. Deduction form of 19.8a 1601. (Contributed by DAW, 13-Feb-2017.)
(𝜑𝜓)       (𝜑 → ∃𝑥𝜓)
 
Theorem19.23bi 1603 Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝜑𝜓)       (𝜑𝜓)
 
Theoremexlimih 1604 Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
(𝜓 → ∀𝑥𝜓)    &   (𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexlimi 1605 Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜓    &   (𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexlimd2 1606 Deduction from Theorem 19.23 of [Margaris] p. 90. Similar to exlimdh 1607 but with one slightly different hypothesis. (Contributed by Jim Kingdon, 30-Dec-2017.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremexlimdh 1607 Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jan-1997.)
(𝜑 → ∀𝑥𝜑)    &   (𝜒 → ∀𝑥𝜒)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremexlimd 1608 Deduction from Theorem 19.9 of [Margaris] p. 89. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof rewritten by Jim Kingdon, 18-Jun-2018.)
𝑥𝜑    &   𝑥𝜒    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓𝜒))
 
Theoremexlimiv 1609* Inference from Theorem 19.23 of [Margaris] p. 90.

This inference, along with our many variants is used to implement a metatheorem called "Rule C" that is given in many logic textbooks. See, for example, Rule C in [Mendelson] p. 81, Rule C in [Margaris] p. 40, or Rule C in Hirst and Hirst's A Primer for Logic and Proof p. 59 (PDF p. 65) at http://www.mathsci.appstate.edu/~jlh/primer/hirst.pdf.

In informal proofs, the statement "Let C be an element such that..." almost always means an implicit application of Rule C.

In essence, Rule C states that if we can prove that some element 𝑥 exists satisfying a wff, i.e. 𝑥𝜑(𝑥) where 𝜑(𝑥) has 𝑥 free, then we can use 𝜑( C ) as a hypothesis for the proof where C is a new (ficticious) constant not appearing previously in the proof, nor in any axioms used, nor in the theorem to be proved. The purpose of Rule C is to get rid of the existential quantifier.

We cannot do this in Metamath directly. Instead, we use the original 𝜑 (containing 𝑥) as an antecedent for the main part of the proof. We eventually arrive at (𝜑𝜓) where 𝜓 is the theorem to be proved and does not contain 𝑥. Then we apply exlimiv 1609 to arrive at (∃𝑥𝜑𝜓). Finally, we separately prove 𝑥𝜑 and detach it with modus ponens ax-mp 5 to arrive at the final theorem 𝜓. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 25-Jul-2012.)

(𝜑𝜓)       (∃𝑥𝜑𝜓)
 
Theoremexim 1610 Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
 
Theoremeximi 1611 Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)       (∃𝑥𝜑 → ∃𝑥𝜓)
 
Theorem2eximi 1612 Inference adding 2 existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
(𝜑𝜓)       (∃𝑥𝑦𝜑 → ∃𝑥𝑦𝜓)
 
Theoremeximii 1613 Inference associated with eximi 1611. (Contributed by BJ, 3-Feb-2018.)
𝑥𝜑    &   (𝜑𝜓)       𝑥𝜓
 
Theoremalinexa 1614 A transformation of quantifiers and logical connectives. (Contributed by NM, 19-Aug-1993.)
(∀𝑥(𝜑 → ¬ 𝜓) ↔ ¬ ∃𝑥(𝜑𝜓))
 
Theoremexbi 1615 Theorem 19.18 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥𝜓))
 
Theoremexbii 1616 Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.)
(𝜑𝜓)       (∃𝑥𝜑 ↔ ∃𝑥𝜓)
 
Theorem2exbii 1617 Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.)
(𝜑𝜓)       (∃𝑥𝑦𝜑 ↔ ∃𝑥𝑦𝜓)
 
Theorem3exbii 1618 Inference adding 3 existential quantifiers to both sides of an equivalence. (Contributed by NM, 2-May-1995.)
(𝜑𝜓)       (∃𝑥𝑦𝑧𝜑 ↔ ∃𝑥𝑦𝑧𝜓)
 
Theoremexancom 1619 Commutation of conjunction inside an existential quantifier. (Contributed by NM, 18-Aug-1993.)
(∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
 
Theoremalrimdd 1620 Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremalrimd 1621 Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   𝑥𝜓    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremeximdh 1622 Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theoremeximd 1623 Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
 
Theoremnexd 1624 Deduction for generalization rule for negated wff. (Contributed by NM, 2-Jan-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ¬ 𝜓)       (𝜑 → ¬ ∃𝑥𝜓)
 
Theoremexbidh 1625 Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
 
Theoremalbid 1626 Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
 
Theoremexbid 1627 Formula-building rule for existential quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
 
Theoremexsimpl 1628 Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
 
Theoremexsimpr 1629 Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
(∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
 
Theoremalexdc 1630 Theorem 19.6 of [Margaris] p. 89, given a decidability condition. The forward direction holds for all propositions, as seen at alexim 1656. (Contributed by Jim Kingdon, 2-Jun-2018.)
(∀𝑥DECID 𝜑 → (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑))
 
Theorem19.29 1631 Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((∀𝑥𝜑 ∧ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.29r 1632 Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
((∃𝑥𝜑 ∧ ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.29r2 1633 Variation of Theorem 19.29 of [Margaris] p. 90 with double quantification. (Contributed by NM, 3-Feb-2005.)
((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))
 
Theorem19.29x 1634 Variation of Theorem 19.29 of [Margaris] p. 90 with mixed quantification. (Contributed by NM, 11-Feb-2005.)
((∃𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓) → ∃𝑥𝑦(𝜑𝜓))
 
Theorem19.35-1 1635 Forward direction of Theorem 19.35 of [Margaris] p. 90. The converse holds for classical logic but not (for all propositions) in intuitionistic logic. (Contributed by Mario Carneiro, 2-Feb-2015.)
(∃𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓))
 
Theorem19.35i 1636 Inference from Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
𝑥(𝜑𝜓)       (∀𝑥𝜑 → ∃𝑥𝜓)
 
Theorem19.25 1637 Theorem 19.25 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
(∀𝑦𝑥(𝜑𝜓) → (∃𝑦𝑥𝜑 → ∃𝑦𝑥𝜓))
 
Theorem19.30dc 1638 Theorem 19.30 of [Margaris] p. 90, with an additional decidability condition. (Contributed by Jim Kingdon, 21-Jul-2018.)
(DECID𝑥𝜓 → (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ∨ ∃𝑥𝜓)))
 
Theorem19.43 1639 Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
(∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓))
 
Theorem19.33b2 1640 The antecedent provides a condition implying the converse of 19.33 1495. Compare Theorem 19.33 of [Margaris] p. 90. This variation of 19.33bdc 1641 is intuitionistically valid without a decidability condition. (Contributed by Mario Carneiro, 2-Feb-2015.)
((¬ ∃𝑥𝜑 ∨ ¬ ∃𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓)))
 
Theorem19.33bdc 1641 Converse of 19.33 1495 given ¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) and a decidability condition. Compare Theorem 19.33 of [Margaris] p. 90. For a version which does not require a decidability condition, see 19.33b2 1640 (Contributed by Jim Kingdon, 23-Apr-2018.)
(DECID𝑥𝜑 → (¬ (∃𝑥𝜑 ∧ ∃𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∨ ∀𝑥𝜓))))
 
Theorem19.40 1642 Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
 
Theorem19.40-2 1643 Theorem *11.42 in [WhiteheadRussell] p. 163. Theorem 19.40 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.)
(∃𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦𝜑 ∧ ∃𝑥𝑦𝜓))
 
Theoremexintrbi 1644 Add/remove a conjunct in the scope of an existential quantifier. (Contributed by Raph Levien, 3-Jul-2006.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 ↔ ∃𝑥(𝜑𝜓)))
 
Theoremexintr 1645 Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.)
(∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥(𝜑𝜓)))
 
Theoremalsyl 1646 Theorem *10.3 in [WhiteheadRussell] p. 150. (Contributed by Andrew Salmon, 8-Jun-2011.)
((∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜒)) → ∀𝑥(𝜑𝜒))
 
Theoremhbex 1647 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
(𝜑 → ∀𝑥𝜑)       (∃𝑦𝜑 → ∀𝑥𝑦𝜑)
 
Theoremnfex 1648 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
𝑥𝜑       𝑥𝑦𝜑
 
Theorem19.2 1649 Theorem 19.2 of [Margaris] p. 89, generalized to use two setvar variables. (Contributed by O'Cat, 31-Mar-2008.)
(∀𝑥𝜑 → ∃𝑦𝜑)
 
Theoremi19.24 1650 Theorem 19.24 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1635, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.)
((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))       ((∀𝑥𝜑 → ∀𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theoremi19.39 1651 Theorem 19.39 of [Margaris] p. 90, with an additional hypothesis. The hypothesis is the converse of 19.35-1 1635, and is a theorem of classical logic, but in intuitionistic logic it will only be provable for some propositions. (Contributed by Jim Kingdon, 22-Jul-2018.)
((∀𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))       ((∃𝑥𝜑 → ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.9ht 1652 A closed version of one direction of 19.9 1655. (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑𝜑))
 
Theorem19.9t 1653 A closed version of 19.9 1655. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortended by Wolf Lammen, 30-Dec-2017.)
(Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
 
Theorem19.9h 1654 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.)
(𝜑 → ∀𝑥𝜑)       (∃𝑥𝜑𝜑)
 
Theorem19.9 1655 A wff may be existentially quantified with a variable not free in it. Theorem 19.9 of [Margaris] p. 89. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
𝑥𝜑       (∃𝑥𝜑𝜑)
 
Theoremalexim 1656 One direction of theorem 19.6 of [Margaris] p. 89. The converse holds given a decidability condition, as seen at alexdc 1630. (Contributed by Jim Kingdon, 2-Jul-2018.)
(∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑)
 
Theoremexnalim 1657 One direction of Theorem 19.14 of [Margaris] p. 90. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
(∃𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑)
 
Theoremexanaliim 1658 A transformation of quantifiers and logical connectives. In classical logic the converse also holds. (Contributed by Jim Kingdon, 15-Jul-2018.)
(∃𝑥(𝜑 ∧ ¬ 𝜓) → ¬ ∀𝑥(𝜑𝜓))
 
Theoremalexnim 1659 A relationship between two quantifiers and negation. (Contributed by Jim Kingdon, 27-Aug-2018.)
(∀𝑥𝑦 ¬ 𝜑 → ¬ ∃𝑥𝑦𝜑)
 
Theoremnnal 1660 The double negation of a universal quantification implies the universal quantification of the double negation. (Contributed by BJ, 24-Nov-2023.)
(¬ ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ¬ 𝜑)
 
Theoremax6blem 1661 If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. This theorem doesn't use ax6b 1662 compared to hbnt 1664. (Contributed by GD, 27-Jan-2018.)
(𝜑 → ∀𝑥𝜑)       𝜑 → ∀𝑥 ¬ 𝜑)
 
Theoremax6b 1662 Quantified Negation. Axiom C5-2 of [Monk2] p. 113.

(Contributed by GD, 27-Jan-2018.)

(¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 
Theoremhbn1 1663 𝑥 is not free in ¬ ∀𝑥𝜑. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 18-Aug-2014.)
(¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 
Theoremhbnt 1664 Closed theorem version of bound-variable hypothesis builder hbn 1665. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
 
Theoremhbn 1665 If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)       𝜑 → ∀𝑥 ¬ 𝜑)
 
Theoremhbnd 1666 Deduction form of bound-variable hypothesis builder hbn 1665. (Contributed by NM, 3-Jan-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓))
 
Theoremnfnt 1667 If 𝑥 is not free in 𝜑, then it is not free in ¬ 𝜑. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.)
(Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
 
Theoremnfnd 1668 Deduction associated with nfnt 1667. (Contributed by Mario Carneiro, 24-Sep-2016.)
(𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥 ¬ 𝜓)
 
Theoremnfn 1669 Inference associated with nfnt 1667. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝜑       𝑥 ¬ 𝜑
 
Theoremnfdc 1670 If 𝑥 is not free in 𝜑, it is not free in DECID 𝜑. (Contributed by Jim Kingdon, 11-Mar-2018.)
𝑥𝜑       𝑥DECID 𝜑
 
Theoremmodal-5 1671 The analog in our predicate calculus of axiom 5 of modal logic S5. (Contributed by NM, 5-Oct-2005.)
(¬ ∀𝑥 ¬ 𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ 𝜑)
 
Theorem19.9d 1672 A deduction version of one direction of 19.9 1655. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
(𝜓 → Ⅎ𝑥𝜑)       (𝜓 → (∃𝑥𝜑𝜑))
 
Theorem19.9hd 1673 A deduction version of one direction of 19.9 1655. This is an older variation of this theorem; new proofs should use 19.9d 1672. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (𝜓 → (𝜑 → ∀𝑥𝜑))       (𝜓 → (∃𝑥𝜑𝜑))
 
Theoremexcomim 1674 One direction of Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝑦𝜑 → ∃𝑦𝑥𝜑)
 
Theoremexcom 1675 Theorem 19.11 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝑦𝜑 ↔ ∃𝑦𝑥𝜑)
 
Theorem19.12 1676 Theorem 19.12 of [Margaris] p. 89. Assuming the converse is a mistake sometimes made by beginners! (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Theorem19.19 1677 Theorem 19.19 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∀𝑥(𝜑𝜓) → (𝜑 ↔ ∃𝑥𝜓))
 
Theorem19.21-2 1678 Theorem 19.21 of [Margaris] p. 90 but with 2 quantifiers. (Contributed by NM, 4-Feb-2005.)
𝑥𝜑    &   𝑦𝜑       (∀𝑥𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝑦𝜓))
 
Theoremnf2 1679 An alternate definition of df-nf 1472, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.)
(Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
 
Theoremnf3 1680 An alternate definition of df-nf 1472. (Contributed by Mario Carneiro, 24-Sep-2016.)
(Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑𝜑))
 
Theoremnf4dc 1681 Variable 𝑥 is effectively not free in 𝜑 iff 𝜑 is always true or always false, given a decidability condition. The reverse direction, nf4r 1682, holds for all propositions. (Contributed by Jim Kingdon, 21-Jul-2018.)
(DECID𝑥𝜑 → (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)))
 
Theoremnf4r 1682 If 𝜑 is always true or always false, then variable 𝑥 is effectively not free in 𝜑. The converse holds given a decidability condition, as seen at nf4dc 1681. (Contributed by Jim Kingdon, 21-Jul-2018.)
((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑)
 
Theorem19.36i 1683 Inference from Theorem 19.36 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
𝑥𝜓    &   𝑥(𝜑𝜓)       (∀𝑥𝜑𝜓)
 
Theorem19.36-1 1684 Closed form of 19.36i 1683. One direction of Theorem 19.36 of [Margaris] p. 90. The converse holds in classical logic, but does not hold (for all propositions) in intuitionistic logic. (Contributed by Jim Kingdon, 20-Jun-2018.)
𝑥𝜓       (∃𝑥(𝜑𝜓) → (∀𝑥𝜑𝜓))
 
Theorem19.37-1 1685 One direction of Theorem 19.37 of [Margaris] p. 90. The converse holds in classical logic but not, in general, here. (Contributed by Jim Kingdon, 21-Jun-2018.)
𝑥𝜑       (∃𝑥(𝜑𝜓) → (𝜑 → ∃𝑥𝜓))
 
Theorem19.37aiv 1686* Inference from Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
𝑥(𝜑𝜓)       (𝜑 → ∃𝑥𝜓)
 
Theorem19.38 1687 Theorem 19.38 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
 
Theorem19.23t 1688 Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 2-Jan-2018.)
(Ⅎ𝑥𝜓 → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
 
Theorem19.23 1689 Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 24-Sep-2016.)
𝑥𝜓       (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.32dc 1690 Theorem 19.32 of [Margaris] p. 90, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.)
𝑥𝜑       (DECID 𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)))
 
Theorem19.32r 1691 One direction of Theorem 19.32 of [Margaris] p. 90. The converse holds if 𝜑 is decidable, as seen at 19.32dc 1690. (Contributed by Jim Kingdon, 28-Jul-2018.)
𝑥𝜑       ((𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
 
Theorem19.31r 1692 One direction of Theorem 19.31 of [Margaris] p. 90. The converse holds in classical logic, but not intuitionistic logic. (Contributed by Jim Kingdon, 28-Jul-2018.)
𝑥𝜓       ((∀𝑥𝜑𝜓) → ∀𝑥(𝜑𝜓))
 
Theorem19.44 1693 Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜓       (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.45 1694 Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
𝑥𝜑       (∃𝑥(𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝜓))
 
Theorem19.34 1695 Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
((∀𝑥𝜑 ∨ ∃𝑥𝜓) → ∃𝑥(𝜑𝜓))
 
Theorem19.41h 1696 Theorem 19.41 of [Margaris] p. 90. New proofs should use 19.41 1697 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)       (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.41 1697 Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
𝑥𝜓       (∃𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theorem19.42h 1698 Theorem 19.42 of [Margaris] p. 90. New proofs should use 19.42 1699 instead. (Contributed by NM, 18-Aug-1993.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)       (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
 
Theorem19.42 1699 Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
𝑥𝜑       (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
 
Theoremexcom13 1700 Swap 1st and 3rd existential quantifiers. (Contributed by NM, 9-Mar-1995.)
(∃𝑥𝑦𝑧𝜑 ↔ ∃𝑧𝑦𝑥𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >