![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alanimi | GIF version |
Description: Variant of al2imi 1402 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
alanimi.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
alanimi | ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alanimi.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 114 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2 | al2imi 1402 | . 2 ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
4 | 3 | imp 123 | 1 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1297 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 |
This theorem is referenced by: 19.26 1425 alsyl 1582 vtoclgft 2691 euind 2824 reuind 2842 sbeqalb 2917 bm1.3ii 3989 trin2 4866 bdbm1.3ii 12670 |
Copyright terms: Public domain | W3C validator |