Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbex | GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
Ref | Expression |
---|---|
hbex.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
hbex | ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbe1 1488 | . . 3 ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) | |
2 | 1 | hbal 1470 | . 2 ⊢ (∀𝑥∃𝑦𝜑 → ∀𝑦∀𝑥∃𝑦𝜑) |
3 | hbex.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
4 | 19.8a 1583 | . . 3 ⊢ (𝜑 → ∃𝑦𝜑) | |
5 | 3, 4 | alrimih 1462 | . 2 ⊢ (𝜑 → ∀𝑥∃𝑦𝜑) |
6 | 2, 5 | exlimih 1586 | 1 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nfex 1630 excomim 1656 19.12 1658 cbvexh 1748 cbvexdh 1919 hbsbv 1934 hbeu1 2029 hbmo 2058 moexexdc 2103 |
Copyright terms: Public domain | W3C validator |