| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > hbex | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| hbex.1 | ⊢ (𝜑 → ∀𝑥𝜑) | 
| Ref | Expression | 
|---|---|
| hbex | ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hbe1 1509 | . . 3 ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) | |
| 2 | 1 | hbal 1491 | . 2 ⊢ (∀𝑥∃𝑦𝜑 → ∀𝑦∀𝑥∃𝑦𝜑) | 
| 3 | hbex.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 4 | 19.8a 1604 | . . 3 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 5 | 3, 4 | alrimih 1483 | . 2 ⊢ (𝜑 → ∀𝑥∃𝑦𝜑) | 
| 6 | 2, 5 | exlimih 1607 | 1 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: nfex 1651 excomim 1677 19.12 1679 cbvexh 1769 cbvexdh 1941 hbsbv 1960 hbeu1 2055 hbmo 2084 moexexdc 2129 | 
| Copyright terms: Public domain | W3C validator |