| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbex | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, it is not free in ∃𝑦𝜑. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
| Ref | Expression |
|---|---|
| hbex.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| Ref | Expression |
|---|---|
| hbex | ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 1519 | . . 3 ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) | |
| 2 | 1 | hbal 1501 | . 2 ⊢ (∀𝑥∃𝑦𝜑 → ∀𝑦∀𝑥∃𝑦𝜑) |
| 3 | hbex.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 4 | 19.8a 1614 | . . 3 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 5 | 3, 4 | alrimih 1493 | . 2 ⊢ (𝜑 → ∀𝑥∃𝑦𝜑) |
| 6 | 2, 5 | exlimih 1617 | 1 ⊢ (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: nfex 1661 excomim 1687 19.12 1689 cbvexh 1779 cbvexdh 1951 hbsbv 1970 hbeu1 2065 hbmo 2094 moexexdc 2139 |
| Copyright terms: Public domain | W3C validator |