ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anc2ri GIF version

Theorem anc2ri 328
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
Hypothesis
Ref Expression
anc2ri.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
anc2ri (𝜑 → (𝜓 → (𝜒𝜑)))

Proof of Theorem anc2ri
StepHypRef Expression
1 anc2ri.1 . 2 (𝜑 → (𝜓𝜒))
2 id 19 . 2 (𝜑𝜑)
31, 2jctird 315 1 (𝜑 → (𝜓 → (𝜒𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  equvini  1751  fv3  5519
  Copyright terms: Public domain W3C validator