ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equvini GIF version

Theorem equvini 1738
Description: A variable introduction law for equality. Lemma 15 of [Monk2] p. 109, however we do not require 𝑧 to be distinct from 𝑥 and 𝑦 (making the proof longer). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
equvini (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))

Proof of Theorem equvini
StepHypRef Expression
1 ax12or 1488 . 2 (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
2 equcomi 1684 . . . . . . 7 (𝑧 = 𝑥𝑥 = 𝑧)
32alimi 1435 . . . . . 6 (∀𝑧 𝑧 = 𝑥 → ∀𝑧 𝑥 = 𝑧)
4 a9e 1676 . . . . . 6 𝑧 𝑧 = 𝑦
53, 4jctir 311 . . . . 5 (∀𝑧 𝑧 = 𝑥 → (∀𝑧 𝑥 = 𝑧 ∧ ∃𝑧 𝑧 = 𝑦))
65a1d 22 . . . 4 (∀𝑧 𝑧 = 𝑥 → (𝑥 = 𝑦 → (∀𝑧 𝑥 = 𝑧 ∧ ∃𝑧 𝑧 = 𝑦)))
7 19.29 1600 . . . 4 ((∀𝑧 𝑥 = 𝑧 ∧ ∃𝑧 𝑧 = 𝑦) → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
86, 7syl6 33 . . 3 (∀𝑧 𝑧 = 𝑥 → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦)))
9 a9e 1676 . . . . . . . 8 𝑧 𝑧 = 𝑥
102eximi 1580 . . . . . . . 8 (∃𝑧 𝑧 = 𝑥 → ∃𝑧 𝑥 = 𝑧)
119, 10ax-mp 5 . . . . . . 7 𝑧 𝑥 = 𝑧
12112a1i 27 . . . . . 6 (∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∃𝑧 𝑥 = 𝑧))
1312anc2ri 328 . . . . 5 (∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (∃𝑧 𝑥 = 𝑧 ∧ ∀𝑧 𝑧 = 𝑦)))
14 19.29r 1601 . . . . 5 ((∃𝑧 𝑥 = 𝑧 ∧ ∀𝑧 𝑧 = 𝑦) → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
1513, 14syl6 33 . . . 4 (∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦)))
16 ax-8 1484 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
1716anc2li 327 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 = 𝑦 → (𝑥 = 𝑧𝑧 = 𝑦)))
1817equcoms 1688 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑥 = 𝑦 → (𝑥 = 𝑧𝑧 = 𝑦)))
1918com12 30 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑧 = 𝑥 → (𝑥 = 𝑧𝑧 = 𝑦)))
2019alimi 1435 . . . . . . . 8 (∀𝑧 𝑥 = 𝑦 → ∀𝑧(𝑧 = 𝑥 → (𝑥 = 𝑧𝑧 = 𝑦)))
21 exim 1579 . . . . . . . 8 (∀𝑧(𝑧 = 𝑥 → (𝑥 = 𝑧𝑧 = 𝑦)) → (∃𝑧 𝑧 = 𝑥 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦)))
2220, 21syl 14 . . . . . . 7 (∀𝑧 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑥 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦)))
239, 22mpi 15 . . . . . 6 (∀𝑧 𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
2423imim2i 12 . . . . 5 ((𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦)))
2524sps 1517 . . . 4 (∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦)))
2615, 25jaoi 706 . . 3 ((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦)))
278, 26jaoi 706 . 2 ((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦)))
281, 27ax-mp 5 1 (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑧 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  wal 1333   = wceq 1335  wex 1472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-i12 1487  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sbequi  1819  equvin  1843
  Copyright terms: Public domain W3C validator