Proof of Theorem equvini
| Step | Hyp | Ref
 | Expression | 
| 1 |   | ax12or 1522 | 
. 2
⊢
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | 
| 2 |   | equcomi 1718 | 
. . . . . . 7
⊢ (𝑧 = 𝑥 → 𝑥 = 𝑧) | 
| 3 | 2 | alimi 1469 | 
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑥 → ∀𝑧 𝑥 = 𝑧) | 
| 4 |   | a9e 1710 | 
. . . . . 6
⊢
∃𝑧 𝑧 = 𝑦 | 
| 5 | 3, 4 | jctir 313 | 
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑥 → (∀𝑧 𝑥 = 𝑧 ∧ ∃𝑧 𝑧 = 𝑦)) | 
| 6 | 5 | a1d 22 | 
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → (𝑥 = 𝑦 → (∀𝑧 𝑥 = 𝑧 ∧ ∃𝑧 𝑧 = 𝑦))) | 
| 7 |   | 19.29 1634 | 
. . . 4
⊢
((∀𝑧 𝑥 = 𝑧 ∧ ∃𝑧 𝑧 = 𝑦) → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) | 
| 8 | 6, 7 | syl6 33 | 
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) | 
| 9 |   | a9e 1710 | 
. . . . . . . 8
⊢
∃𝑧 𝑧 = 𝑥 | 
| 10 | 2 | eximi 1614 | 
. . . . . . . 8
⊢
(∃𝑧 𝑧 = 𝑥 → ∃𝑧 𝑥 = 𝑧) | 
| 11 | 9, 10 | ax-mp 5 | 
. . . . . . 7
⊢
∃𝑧 𝑥 = 𝑧 | 
| 12 | 11 | 2a1i 27 | 
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∃𝑧 𝑥 = 𝑧)) | 
| 13 | 12 | anc2ri 330 | 
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (∃𝑧 𝑥 = 𝑧 ∧ ∀𝑧 𝑧 = 𝑦))) | 
| 14 |   | 19.29r 1635 | 
. . . . 5
⊢
((∃𝑧 𝑥 = 𝑧 ∧ ∀𝑧 𝑧 = 𝑦) → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) | 
| 15 | 13, 14 | syl6 33 | 
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) | 
| 16 |   | ax-8 1518 | 
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 → 𝑧 = 𝑦)) | 
| 17 | 16 | anc2li 329 | 
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 → (𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) | 
| 18 | 17 | equcoms 1722 | 
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑥 = 𝑦 → (𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) | 
| 19 | 18 | com12 30 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → (𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) | 
| 20 | 19 | alimi 1469 | 
. . . . . . . 8
⊢
(∀𝑧 𝑥 = 𝑦 → ∀𝑧(𝑧 = 𝑥 → (𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) | 
| 21 |   | exim 1613 | 
. . . . . . . 8
⊢
(∀𝑧(𝑧 = 𝑥 → (𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) → (∃𝑧 𝑧 = 𝑥 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) | 
| 22 | 20, 21 | syl 14 | 
. . . . . . 7
⊢
(∀𝑧 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑥 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) | 
| 23 | 9, 22 | mpi 15 | 
. . . . . 6
⊢
(∀𝑧 𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) | 
| 24 | 23 | imim2i 12 | 
. . . . 5
⊢ ((𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) | 
| 25 | 24 | sps 1551 | 
. . . 4
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) | 
| 26 | 15, 25 | jaoi 717 | 
. . 3
⊢
((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) | 
| 27 | 8, 26 | jaoi 717 | 
. 2
⊢
((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) | 
| 28 | 1, 27 | ax-mp 5 | 
1
⊢ (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) |