Proof of Theorem equvini
Step | Hyp | Ref
| Expression |
1 | | ax12or 1488 |
. 2
⊢
(∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
2 | | equcomi 1684 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → 𝑥 = 𝑧) |
3 | 2 | alimi 1435 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑥 → ∀𝑧 𝑥 = 𝑧) |
4 | | a9e 1676 |
. . . . . 6
⊢
∃𝑧 𝑧 = 𝑦 |
5 | 3, 4 | jctir 311 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑥 → (∀𝑧 𝑥 = 𝑧 ∧ ∃𝑧 𝑧 = 𝑦)) |
6 | 5 | a1d 22 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑥 → (𝑥 = 𝑦 → (∀𝑧 𝑥 = 𝑧 ∧ ∃𝑧 𝑧 = 𝑦))) |
7 | | 19.29 1600 |
. . . 4
⊢
((∀𝑧 𝑥 = 𝑧 ∧ ∃𝑧 𝑧 = 𝑦) → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) |
8 | 6, 7 | syl6 33 |
. . 3
⊢
(∀𝑧 𝑧 = 𝑥 → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) |
9 | | a9e 1676 |
. . . . . . . 8
⊢
∃𝑧 𝑧 = 𝑥 |
10 | 2 | eximi 1580 |
. . . . . . . 8
⊢
(∃𝑧 𝑧 = 𝑥 → ∃𝑧 𝑥 = 𝑧) |
11 | 9, 10 | ax-mp 5 |
. . . . . . 7
⊢
∃𝑧 𝑥 = 𝑧 |
12 | 11 | 2a1i 27 |
. . . . . 6
⊢
(∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∃𝑧 𝑥 = 𝑧)) |
13 | 12 | anc2ri 328 |
. . . . 5
⊢
(∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → (∃𝑧 𝑥 = 𝑧 ∧ ∀𝑧 𝑧 = 𝑦))) |
14 | | 19.29r 1601 |
. . . . 5
⊢
((∃𝑧 𝑥 = 𝑧 ∧ ∀𝑧 𝑧 = 𝑦) → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) |
15 | 13, 14 | syl6 33 |
. . . 4
⊢
(∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) |
16 | | ax-8 1484 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 → 𝑧 = 𝑦)) |
17 | 16 | anc2li 327 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑥 = 𝑦 → (𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) |
18 | 17 | equcoms 1688 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑥 = 𝑦 → (𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) |
19 | 18 | com12 30 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → (𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) |
20 | 19 | alimi 1435 |
. . . . . . . 8
⊢
(∀𝑧 𝑥 = 𝑦 → ∀𝑧(𝑧 = 𝑥 → (𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) |
21 | | exim 1579 |
. . . . . . . 8
⊢
(∀𝑧(𝑧 = 𝑥 → (𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) → (∃𝑧 𝑧 = 𝑥 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) |
22 | 20, 21 | syl 14 |
. . . . . . 7
⊢
(∀𝑧 𝑥 = 𝑦 → (∃𝑧 𝑧 = 𝑥 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) |
23 | 9, 22 | mpi 15 |
. . . . . 6
⊢
(∀𝑧 𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) |
24 | 23 | imim2i 12 |
. . . . 5
⊢ ((𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) |
25 | 24 | sps 1517 |
. . . 4
⊢
(∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) |
26 | 15, 25 | jaoi 706 |
. . 3
⊢
((∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) |
27 | 8, 26 | jaoi 706 |
. 2
⊢
((∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) → (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦))) |
28 | 1, 27 | ax-mp 5 |
1
⊢ (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) |