ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctird GIF version

Theorem jctird 315
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.)
Hypotheses
Ref Expression
jctird.1 (𝜑 → (𝜓𝜒))
jctird.2 (𝜑𝜃)
Assertion
Ref Expression
jctird (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem jctird
StepHypRef Expression
1 jctird.1 . 2 (𝜑 → (𝜓𝜒))
2 jctird.2 . . 3 (𝜑𝜃)
32a1d 22 . 2 (𝜑 → (𝜓𝜃))
41, 3jcad 305 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  anc2ri  328  ordunisuc2r  4491  fnun  5294  fco  5353  fiintim  6894  cauappcvgprlemladdru  7597  cauappcvgprlemladdrl  7598  caucvgprlemnkj  7607  dvdsdivcl  11788  cnrest2  12886  cnptopresti  12888  bdxmet  13151  lgsdir  13586
  Copyright terms: Public domain W3C validator