ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctird GIF version

Theorem jctird 317
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.)
Hypotheses
Ref Expression
jctird.1 (𝜑 → (𝜓𝜒))
jctird.2 (𝜑𝜃)
Assertion
Ref Expression
jctird (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem jctird
StepHypRef Expression
1 jctird.1 . 2 (𝜑 → (𝜓𝜒))
2 jctird.2 . . 3 (𝜑𝜃)
32a1d 22 . 2 (𝜑 → (𝜓𝜃))
41, 3jcad 307 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  anc2ri  330  ordunisuc2r  4546  fnun  5360  fco  5419  fiintim  6985  cauappcvgprlemladdru  7716  cauappcvgprlemladdrl  7717  caucvgprlemnkj  7726  dvdsdivcl  11992  cnrest2  14404  cnptopresti  14406  bdxmet  14669  lgsdir  15151
  Copyright terms: Public domain W3C validator