Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anc2li | GIF version |
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.) |
Ref | Expression |
---|---|
anc2li.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anc2li | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anc2li.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
3 | 1, 2 | jctild 314 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: imdistani 443 equvini 1751 sssnm 3741 tfis 4567 indpi 7304 |
Copyright terms: Public domain | W3C validator |