| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > anc2li | GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.) | 
| Ref | Expression | 
|---|---|
| anc2li.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| anc2li | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anc2li.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
| 3 | 1, 2 | jctild 316 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 | 
| This theorem is referenced by: imdistani 445 equvini 1772 sssnm 3784 tfis 4619 indpi 7409 | 
| Copyright terms: Public domain | W3C validator |