| Step | Hyp | Ref
| Expression |
| 1 | | elfv 5584 |
. . 3
⊢ (𝑥 ∈ (𝐹‘𝐴) ↔ ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧))) |
| 2 | | biimpr 130 |
. . . . . . . . . 10
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝑦 = 𝑧 → 𝐴𝐹𝑦)) |
| 3 | 2 | alimi 1479 |
. . . . . . . . 9
⊢
(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ∀𝑦(𝑦 = 𝑧 → 𝐴𝐹𝑦)) |
| 4 | | vex 2776 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
| 5 | | breq2 4052 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝐴𝐹𝑦 ↔ 𝐴𝐹𝑧)) |
| 6 | 4, 5 | ceqsalv 2804 |
. . . . . . . . 9
⊢
(∀𝑦(𝑦 = 𝑧 → 𝐴𝐹𝑦) ↔ 𝐴𝐹𝑧) |
| 7 | 3, 6 | sylib 122 |
. . . . . . . 8
⊢
(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → 𝐴𝐹𝑧) |
| 8 | 7 | anim2i 342 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → (𝑥 ∈ 𝑧 ∧ 𝐴𝐹𝑧)) |
| 9 | 8 | eximi 1624 |
. . . . . 6
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝐴𝐹𝑧)) |
| 10 | | elequ2 2182 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦)) |
| 11 | | breq2 4052 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝐴𝐹𝑧 ↔ 𝐴𝐹𝑦)) |
| 12 | 10, 11 | anbi12d 473 |
. . . . . . 7
⊢ (𝑧 = 𝑦 → ((𝑥 ∈ 𝑧 ∧ 𝐴𝐹𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦))) |
| 13 | 12 | cbvexv 1943 |
. . . . . 6
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ 𝐴𝐹𝑧) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦)) |
| 14 | 9, 13 | sylib 122 |
. . . . 5
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦)) |
| 15 | | exsimpr 1642 |
. . . . . 6
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → ∃𝑧∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) |
| 16 | | df-eu 2058 |
. . . . . 6
⊢
(∃!𝑦 𝐴𝐹𝑦 ↔ ∃𝑧∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) |
| 17 | 15, 16 | sylibr 134 |
. . . . 5
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → ∃!𝑦 𝐴𝐹𝑦) |
| 18 | 14, 17 | jca 306 |
. . . 4
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)) |
| 19 | | nfeu1 2066 |
. . . . . . 7
⊢
Ⅎ𝑦∃!𝑦 𝐴𝐹𝑦 |
| 20 | | nfv 1552 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ 𝑧 |
| 21 | | nfa1 1565 |
. . . . . . . . 9
⊢
Ⅎ𝑦∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) |
| 22 | 20, 21 | nfan 1589 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) |
| 23 | 22 | nfex 1661 |
. . . . . . 7
⊢
Ⅎ𝑦∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) |
| 24 | 19, 23 | nfim 1596 |
. . . . . 6
⊢
Ⅎ𝑦(∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧))) |
| 25 | | biimp 118 |
. . . . . . . . . . . . . 14
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝐴𝐹𝑦 → 𝑦 = 𝑧)) |
| 26 | | ax-14 2180 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧)) |
| 27 | 25, 26 | syl6 33 |
. . . . . . . . . . . . 13
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝐴𝐹𝑦 → (𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧))) |
| 28 | 27 | com23 78 |
. . . . . . . . . . . 12
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝑥 ∈ 𝑦 → (𝐴𝐹𝑦 → 𝑥 ∈ 𝑧))) |
| 29 | 28 | impd 254 |
. . . . . . . . . . 11
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → 𝑥 ∈ 𝑧)) |
| 30 | 29 | sps 1561 |
. . . . . . . . . 10
⊢
(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → 𝑥 ∈ 𝑧)) |
| 31 | 30 | anc2ri 330 |
. . . . . . . . 9
⊢
(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) |
| 32 | 31 | com12 30 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) |
| 33 | 32 | eximdv 1904 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (∃𝑧∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) |
| 34 | 16, 33 | biimtrid 152 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) |
| 35 | 24, 34 | exlimi 1618 |
. . . . 5
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) |
| 36 | 35 | imp 124 |
. . . 4
⊢
((∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦) → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧))) |
| 37 | 18, 36 | impbii 126 |
. . 3
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)) |
| 38 | 1, 37 | bitri 184 |
. 2
⊢ (𝑥 ∈ (𝐹‘𝐴) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)) |
| 39 | 38 | abbi2i 2321 |
1
⊢ (𝐹‘𝐴) = {𝑥 ∣ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)} |