ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv3 GIF version

Theorem fv3 5444
Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv3 (𝐹𝐴) = {𝑥 ∣ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)}
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐴,𝑦

Proof of Theorem fv3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elfv 5419 . . 3 (𝑥 ∈ (𝐹𝐴) ↔ ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)))
2 bi2 129 . . . . . . . . . 10 ((𝐴𝐹𝑦𝑦 = 𝑧) → (𝑦 = 𝑧𝐴𝐹𝑦))
32alimi 1431 . . . . . . . . 9 (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → ∀𝑦(𝑦 = 𝑧𝐴𝐹𝑦))
4 vex 2689 . . . . . . . . . 10 𝑧 ∈ V
5 breq2 3933 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐴𝐹𝑦𝐴𝐹𝑧))
64, 5ceqsalv 2716 . . . . . . . . 9 (∀𝑦(𝑦 = 𝑧𝐴𝐹𝑦) ↔ 𝐴𝐹𝑧)
73, 6sylib 121 . . . . . . . 8 (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → 𝐴𝐹𝑧)
87anim2i 339 . . . . . . 7 ((𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → (𝑥𝑧𝐴𝐹𝑧))
98eximi 1579 . . . . . 6 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → ∃𝑧(𝑥𝑧𝐴𝐹𝑧))
10 elequ2 1691 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
11 breq2 3933 . . . . . . . 8 (𝑧 = 𝑦 → (𝐴𝐹𝑧𝐴𝐹𝑦))
1210, 11anbi12d 464 . . . . . . 7 (𝑧 = 𝑦 → ((𝑥𝑧𝐴𝐹𝑧) ↔ (𝑥𝑦𝐴𝐹𝑦)))
1312cbvexv 1890 . . . . . 6 (∃𝑧(𝑥𝑧𝐴𝐹𝑧) ↔ ∃𝑦(𝑥𝑦𝐴𝐹𝑦))
149, 13sylib 121 . . . . 5 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → ∃𝑦(𝑥𝑦𝐴𝐹𝑦))
15 exsimpr 1597 . . . . . 6 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → ∃𝑧𝑦(𝐴𝐹𝑦𝑦 = 𝑧))
16 df-eu 2002 . . . . . 6 (∃!𝑦 𝐴𝐹𝑦 ↔ ∃𝑧𝑦(𝐴𝐹𝑦𝑦 = 𝑧))
1715, 16sylibr 133 . . . . 5 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → ∃!𝑦 𝐴𝐹𝑦)
1814, 17jca 304 . . . 4 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦))
19 nfeu1 2010 . . . . . . 7 𝑦∃!𝑦 𝐴𝐹𝑦
20 nfv 1508 . . . . . . . . 9 𝑦 𝑥𝑧
21 nfa1 1521 . . . . . . . . 9 𝑦𝑦(𝐴𝐹𝑦𝑦 = 𝑧)
2220, 21nfan 1544 . . . . . . . 8 𝑦(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))
2322nfex 1616 . . . . . . 7 𝑦𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))
2419, 23nfim 1551 . . . . . 6 𝑦(∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)))
25 bi1 117 . . . . . . . . . . . . . 14 ((𝐴𝐹𝑦𝑦 = 𝑧) → (𝐴𝐹𝑦𝑦 = 𝑧))
26 ax-14 1492 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
2725, 26syl6 33 . . . . . . . . . . . . 13 ((𝐴𝐹𝑦𝑦 = 𝑧) → (𝐴𝐹𝑦 → (𝑥𝑦𝑥𝑧)))
2827com23 78 . . . . . . . . . . . 12 ((𝐴𝐹𝑦𝑦 = 𝑧) → (𝑥𝑦 → (𝐴𝐹𝑦𝑥𝑧)))
2928impd 252 . . . . . . . . . . 11 ((𝐴𝐹𝑦𝑦 = 𝑧) → ((𝑥𝑦𝐴𝐹𝑦) → 𝑥𝑧))
3029sps 1517 . . . . . . . . . 10 (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → ((𝑥𝑦𝐴𝐹𝑦) → 𝑥𝑧))
3130anc2ri 328 . . . . . . . . 9 (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → ((𝑥𝑦𝐴𝐹𝑦) → (𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3231com12 30 . . . . . . . 8 ((𝑥𝑦𝐴𝐹𝑦) → (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → (𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3332eximdv 1852 . . . . . . 7 ((𝑥𝑦𝐴𝐹𝑦) → (∃𝑧𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3416, 33syl5bi 151 . . . . . 6 ((𝑥𝑦𝐴𝐹𝑦) → (∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3524, 34exlimi 1573 . . . . 5 (∃𝑦(𝑥𝑦𝐴𝐹𝑦) → (∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3635imp 123 . . . 4 ((∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦) → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)))
3718, 36impbii 125 . . 3 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) ↔ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦))
381, 37bitri 183 . 2 (𝑥 ∈ (𝐹𝐴) ↔ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦))
3938abbi2i 2254 1 (𝐹𝐴) = {𝑥 ∣ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1329   = wceq 1331  wex 1468  wcel 1480  ∃!weu 1999  {cab 2125   class class class wbr 3929  cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator