ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv3 GIF version

Theorem fv3 5534
Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv3 (𝐹𝐴) = {𝑥 ∣ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)}
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐴,𝑦

Proof of Theorem fv3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elfv 5509 . . 3 (𝑥 ∈ (𝐹𝐴) ↔ ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)))
2 biimpr 130 . . . . . . . . . 10 ((𝐴𝐹𝑦𝑦 = 𝑧) → (𝑦 = 𝑧𝐴𝐹𝑦))
32alimi 1455 . . . . . . . . 9 (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → ∀𝑦(𝑦 = 𝑧𝐴𝐹𝑦))
4 vex 2740 . . . . . . . . . 10 𝑧 ∈ V
5 breq2 4004 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐴𝐹𝑦𝐴𝐹𝑧))
64, 5ceqsalv 2767 . . . . . . . . 9 (∀𝑦(𝑦 = 𝑧𝐴𝐹𝑦) ↔ 𝐴𝐹𝑧)
73, 6sylib 122 . . . . . . . 8 (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → 𝐴𝐹𝑧)
87anim2i 342 . . . . . . 7 ((𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → (𝑥𝑧𝐴𝐹𝑧))
98eximi 1600 . . . . . 6 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → ∃𝑧(𝑥𝑧𝐴𝐹𝑧))
10 elequ2 2153 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
11 breq2 4004 . . . . . . . 8 (𝑧 = 𝑦 → (𝐴𝐹𝑧𝐴𝐹𝑦))
1210, 11anbi12d 473 . . . . . . 7 (𝑧 = 𝑦 → ((𝑥𝑧𝐴𝐹𝑧) ↔ (𝑥𝑦𝐴𝐹𝑦)))
1312cbvexv 1918 . . . . . 6 (∃𝑧(𝑥𝑧𝐴𝐹𝑧) ↔ ∃𝑦(𝑥𝑦𝐴𝐹𝑦))
149, 13sylib 122 . . . . 5 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → ∃𝑦(𝑥𝑦𝐴𝐹𝑦))
15 exsimpr 1618 . . . . . 6 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → ∃𝑧𝑦(𝐴𝐹𝑦𝑦 = 𝑧))
16 df-eu 2029 . . . . . 6 (∃!𝑦 𝐴𝐹𝑦 ↔ ∃𝑧𝑦(𝐴𝐹𝑦𝑦 = 𝑧))
1715, 16sylibr 134 . . . . 5 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → ∃!𝑦 𝐴𝐹𝑦)
1814, 17jca 306 . . . 4 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) → (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦))
19 nfeu1 2037 . . . . . . 7 𝑦∃!𝑦 𝐴𝐹𝑦
20 nfv 1528 . . . . . . . . 9 𝑦 𝑥𝑧
21 nfa1 1541 . . . . . . . . 9 𝑦𝑦(𝐴𝐹𝑦𝑦 = 𝑧)
2220, 21nfan 1565 . . . . . . . 8 𝑦(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))
2322nfex 1637 . . . . . . 7 𝑦𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))
2419, 23nfim 1572 . . . . . 6 𝑦(∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)))
25 biimp 118 . . . . . . . . . . . . . 14 ((𝐴𝐹𝑦𝑦 = 𝑧) → (𝐴𝐹𝑦𝑦 = 𝑧))
26 ax-14 2151 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
2725, 26syl6 33 . . . . . . . . . . . . 13 ((𝐴𝐹𝑦𝑦 = 𝑧) → (𝐴𝐹𝑦 → (𝑥𝑦𝑥𝑧)))
2827com23 78 . . . . . . . . . . . 12 ((𝐴𝐹𝑦𝑦 = 𝑧) → (𝑥𝑦 → (𝐴𝐹𝑦𝑥𝑧)))
2928impd 254 . . . . . . . . . . 11 ((𝐴𝐹𝑦𝑦 = 𝑧) → ((𝑥𝑦𝐴𝐹𝑦) → 𝑥𝑧))
3029sps 1537 . . . . . . . . . 10 (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → ((𝑥𝑦𝐴𝐹𝑦) → 𝑥𝑧))
3130anc2ri 330 . . . . . . . . 9 (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → ((𝑥𝑦𝐴𝐹𝑦) → (𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3231com12 30 . . . . . . . 8 ((𝑥𝑦𝐴𝐹𝑦) → (∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → (𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3332eximdv 1880 . . . . . . 7 ((𝑥𝑦𝐴𝐹𝑦) → (∃𝑧𝑦(𝐴𝐹𝑦𝑦 = 𝑧) → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3416, 33biimtrid 152 . . . . . 6 ((𝑥𝑦𝐴𝐹𝑦) → (∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3524, 34exlimi 1594 . . . . 5 (∃𝑦(𝑥𝑦𝐴𝐹𝑦) → (∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧))))
3635imp 124 . . . 4 ((∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦) → ∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)))
3718, 36impbii 126 . . 3 (∃𝑧(𝑥𝑧 ∧ ∀𝑦(𝐴𝐹𝑦𝑦 = 𝑧)) ↔ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦))
381, 37bitri 184 . 2 (𝑥 ∈ (𝐹𝐴) ↔ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦))
3938abbi2i 2292 1 (𝐹𝐴) = {𝑥 ∣ (∃𝑦(𝑥𝑦𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1351   = wceq 1353  wex 1492  ∃!weu 2026  wcel 2148  {cab 2163   class class class wbr 4000  cfv 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2739  df-un 3133  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-iota 5174  df-fv 5220
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator