| Step | Hyp | Ref
 | Expression | 
| 1 |   | elfv 5556 | 
. . 3
⊢ (𝑥 ∈ (𝐹‘𝐴) ↔ ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧))) | 
| 2 |   | biimpr 130 | 
. . . . . . . . . 10
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝑦 = 𝑧 → 𝐴𝐹𝑦)) | 
| 3 | 2 | alimi 1469 | 
. . . . . . . . 9
⊢
(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ∀𝑦(𝑦 = 𝑧 → 𝐴𝐹𝑦)) | 
| 4 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑧 ∈ V | 
| 5 |   | breq2 4037 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝐴𝐹𝑦 ↔ 𝐴𝐹𝑧)) | 
| 6 | 4, 5 | ceqsalv 2793 | 
. . . . . . . . 9
⊢
(∀𝑦(𝑦 = 𝑧 → 𝐴𝐹𝑦) ↔ 𝐴𝐹𝑧) | 
| 7 | 3, 6 | sylib 122 | 
. . . . . . . 8
⊢
(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → 𝐴𝐹𝑧) | 
| 8 | 7 | anim2i 342 | 
. . . . . . 7
⊢ ((𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → (𝑥 ∈ 𝑧 ∧ 𝐴𝐹𝑧)) | 
| 9 | 8 | eximi 1614 | 
. . . . . 6
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝐴𝐹𝑧)) | 
| 10 |   | elequ2 2172 | 
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦)) | 
| 11 |   | breq2 4037 | 
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝐴𝐹𝑧 ↔ 𝐴𝐹𝑦)) | 
| 12 | 10, 11 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑧 = 𝑦 → ((𝑥 ∈ 𝑧 ∧ 𝐴𝐹𝑧) ↔ (𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦))) | 
| 13 | 12 | cbvexv 1933 | 
. . . . . 6
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ 𝐴𝐹𝑧) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦)) | 
| 14 | 9, 13 | sylib 122 | 
. . . . 5
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦)) | 
| 15 |   | exsimpr 1632 | 
. . . . . 6
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → ∃𝑧∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) | 
| 16 |   | df-eu 2048 | 
. . . . . 6
⊢
(∃!𝑦 𝐴𝐹𝑦 ↔ ∃𝑧∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) | 
| 17 | 15, 16 | sylibr 134 | 
. . . . 5
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → ∃!𝑦 𝐴𝐹𝑦) | 
| 18 | 14, 17 | jca 306 | 
. . . 4
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)) | 
| 19 |   | nfeu1 2056 | 
. . . . . . 7
⊢
Ⅎ𝑦∃!𝑦 𝐴𝐹𝑦 | 
| 20 |   | nfv 1542 | 
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ 𝑧 | 
| 21 |   | nfa1 1555 | 
. . . . . . . . 9
⊢
Ⅎ𝑦∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) | 
| 22 | 20, 21 | nfan 1579 | 
. . . . . . . 8
⊢
Ⅎ𝑦(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) | 
| 23 | 22 | nfex 1651 | 
. . . . . . 7
⊢
Ⅎ𝑦∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) | 
| 24 | 19, 23 | nfim 1586 | 
. . . . . 6
⊢
Ⅎ𝑦(∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧))) | 
| 25 |   | biimp 118 | 
. . . . . . . . . . . . . 14
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝐴𝐹𝑦 → 𝑦 = 𝑧)) | 
| 26 |   | ax-14 2170 | 
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧)) | 
| 27 | 25, 26 | syl6 33 | 
. . . . . . . . . . . . 13
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝐴𝐹𝑦 → (𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧))) | 
| 28 | 27 | com23 78 | 
. . . . . . . . . . . 12
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝑥 ∈ 𝑦 → (𝐴𝐹𝑦 → 𝑥 ∈ 𝑧))) | 
| 29 | 28 | impd 254 | 
. . . . . . . . . . 11
⊢ ((𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → 𝑥 ∈ 𝑧)) | 
| 30 | 29 | sps 1551 | 
. . . . . . . . . 10
⊢
(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → 𝑥 ∈ 𝑧)) | 
| 31 | 30 | anc2ri 330 | 
. . . . . . . . 9
⊢
(∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) | 
| 32 | 31 | com12 30 | 
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → (𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) | 
| 33 | 32 | eximdv 1894 | 
. . . . . . 7
⊢ ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (∃𝑧∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧) → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) | 
| 34 | 16, 33 | biimtrid 152 | 
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) | 
| 35 | 24, 34 | exlimi 1608 | 
. . . . 5
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) → (∃!𝑦 𝐴𝐹𝑦 → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)))) | 
| 36 | 35 | imp 124 | 
. . . 4
⊢
((∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦) → ∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧))) | 
| 37 | 18, 36 | impbii 126 | 
. . 3
⊢
(∃𝑧(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑧)) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)) | 
| 38 | 1, 37 | bitri 184 | 
. 2
⊢ (𝑥 ∈ (𝐹‘𝐴) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)) | 
| 39 | 38 | abbi2i 2311 | 
1
⊢ (𝐹‘𝐴) = {𝑥 ∣ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)} |