Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addass | GIF version |
Description: Alias for ax-addass 7855, for naming consistency with addassi 7907. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addass 7855 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 + caddc 7756 |
This theorem was proved from axioms: ax-addass 7855 |
This theorem is referenced by: addassi 7907 addassd 7921 add12 8056 add32 8057 add32r 8058 add4 8059 nnaddcl 8877 uzaddcl 9524 xaddass 9805 fztp 10013 ser3add 10440 expadd 10497 bernneq 10575 faclbnd6 10657 resqrexlemover 10952 clim2ser 11278 clim2ser2 11279 summodclem3 11321 isumsplit 11432 cvgratnnlemseq 11467 odd2np1lem 11809 ptolemy 13385 |
Copyright terms: Public domain | W3C validator |