| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addass | GIF version | ||
| Description: Alias for ax-addass 8000, for naming consistency with addassi 8053. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addass 8000 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 + caddc 7901 |
| This theorem was proved from axioms: ax-addass 8000 |
| This theorem is referenced by: addassi 8053 addassd 8068 add12 8203 add32 8204 add32r 8205 add4 8206 nnaddcl 9029 uzaddcl 9679 xaddass 9963 fztp 10172 ser3add 10633 expadd 10692 bernneq 10771 faclbnd6 10855 resqrexlemover 11194 clim2ser 11521 clim2ser2 11522 summodclem3 11564 isumsplit 11675 cvgratnnlemseq 11710 odd2np1lem 12056 cncrng 14203 ptolemy 15168 |
| Copyright terms: Public domain | W3C validator |