| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addass | GIF version | ||
| Description: Alias for ax-addass 8097, for naming consistency with addassi 8150. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addass 8097 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 + caddc 7998 |
| This theorem was proved from axioms: ax-addass 8097 |
| This theorem is referenced by: addassi 8150 addassd 8165 add12 8300 add32 8301 add32r 8302 add4 8303 nnaddcl 9126 uzaddcl 9777 xaddass 10061 fztp 10270 ser3add 10739 expadd 10798 bernneq 10877 faclbnd6 10961 resqrexlemover 11516 clim2ser 11843 clim2ser2 11844 summodclem3 11886 isumsplit 11997 cvgratnnlemseq 12032 odd2np1lem 12378 cncrng 14527 ptolemy 15492 |
| Copyright terms: Public domain | W3C validator |