ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addass GIF version

Theorem addass 8026
Description: Alias for ax-addass 7998, for naming consistency with addassi 8051. (Contributed by NM, 10-Mar-2008.)
Assertion
Ref Expression
addass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Proof of Theorem addass
StepHypRef Expression
1 ax-addass 7998 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7894   + caddc 7899
This theorem was proved from axioms:  ax-addass 7998
This theorem is referenced by:  addassi  8051  addassd  8066  add12  8201  add32  8202  add32r  8203  add4  8204  nnaddcl  9027  uzaddcl  9677  xaddass  9961  fztp  10170  ser3add  10631  expadd  10690  bernneq  10769  faclbnd6  10853  resqrexlemover  11192  clim2ser  11519  clim2ser2  11520  summodclem3  11562  isumsplit  11673  cvgratnnlemseq  11708  odd2np1lem  12054  cncrng  14201  ptolemy  15144
  Copyright terms: Public domain W3C validator