![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addass | GIF version |
Description: Alias for ax-addass 7974, for naming consistency with addassi 8027. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addass 7974 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 + caddc 7875 |
This theorem was proved from axioms: ax-addass 7974 |
This theorem is referenced by: addassi 8027 addassd 8042 add12 8177 add32 8178 add32r 8179 add4 8180 nnaddcl 9002 uzaddcl 9651 xaddass 9935 fztp 10144 ser3add 10593 expadd 10652 bernneq 10731 faclbnd6 10815 resqrexlemover 11154 clim2ser 11480 clim2ser2 11481 summodclem3 11523 isumsplit 11634 cvgratnnlemseq 11669 odd2np1lem 12013 cncrng 14057 ptolemy 14959 |
Copyright terms: Public domain | W3C validator |