![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addass | GIF version |
Description: Alias for ax-addass 7915, for naming consistency with addassi 7967. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addass 7915 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 (class class class)co 5877 ℂcc 7811 + caddc 7816 |
This theorem was proved from axioms: ax-addass 7915 |
This theorem is referenced by: addassi 7967 addassd 7982 add12 8117 add32 8118 add32r 8119 add4 8120 nnaddcl 8941 uzaddcl 9588 xaddass 9871 fztp 10080 ser3add 10507 expadd 10564 bernneq 10643 faclbnd6 10726 resqrexlemover 11021 clim2ser 11347 clim2ser2 11348 summodclem3 11390 isumsplit 11501 cvgratnnlemseq 11536 odd2np1lem 11879 cncrng 13548 ptolemy 14330 |
Copyright terms: Public domain | W3C validator |