Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addass | GIF version |
Description: Alias for ax-addass 7828, for naming consistency with addassi 7880. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addass 7828 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 963 = wceq 1335 ∈ wcel 2128 (class class class)co 5821 ℂcc 7724 + caddc 7729 |
This theorem was proved from axioms: ax-addass 7828 |
This theorem is referenced by: addassi 7880 addassd 7894 add12 8027 add32 8028 add32r 8029 add4 8030 nnaddcl 8847 uzaddcl 9491 xaddass 9766 fztp 9973 ser3add 10397 expadd 10454 bernneq 10531 faclbnd6 10611 resqrexlemover 10903 clim2ser 11227 clim2ser2 11228 summodclem3 11270 isumsplit 11381 cvgratnnlemseq 11416 odd2np1lem 11755 ptolemy 13116 |
Copyright terms: Public domain | W3C validator |