![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addass | GIF version |
Description: Alias for ax-addass 7976, for naming consistency with addassi 8029. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addass 7976 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 + caddc 7877 |
This theorem was proved from axioms: ax-addass 7976 |
This theorem is referenced by: addassi 8029 addassd 8044 add12 8179 add32 8180 add32r 8181 add4 8182 nnaddcl 9004 uzaddcl 9654 xaddass 9938 fztp 10147 ser3add 10596 expadd 10655 bernneq 10734 faclbnd6 10818 resqrexlemover 11157 clim2ser 11483 clim2ser2 11484 summodclem3 11526 isumsplit 11637 cvgratnnlemseq 11672 odd2np1lem 12016 cncrng 14068 ptolemy 15000 |
Copyright terms: Public domain | W3C validator |