ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addass GIF version

Theorem addass 7883
Description: Alias for ax-addass 7855, for naming consistency with addassi 7907. (Contributed by NM, 10-Mar-2008.)
Assertion
Ref Expression
addass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Proof of Theorem addass
StepHypRef Expression
1 ax-addass 7855 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 968   = wceq 1343  wcel 2136  (class class class)co 5842  cc 7751   + caddc 7756
This theorem was proved from axioms:  ax-addass 7855
This theorem is referenced by:  addassi  7907  addassd  7921  add12  8056  add32  8057  add32r  8058  add4  8059  nnaddcl  8877  uzaddcl  9524  xaddass  9805  fztp  10013  ser3add  10440  expadd  10497  bernneq  10575  faclbnd6  10657  resqrexlemover  10952  clim2ser  11278  clim2ser2  11279  summodclem3  11321  isumsplit  11432  cvgratnnlemseq  11467  odd2np1lem  11809  ptolemy  13385
  Copyright terms: Public domain W3C validator