| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addass | GIF version | ||
| Description: Alias for ax-addass 8009, for naming consistency with addassi 8062. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addass 8009 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 (class class class)co 5934 ℂcc 7905 + caddc 7910 |
| This theorem was proved from axioms: ax-addass 8009 |
| This theorem is referenced by: addassi 8062 addassd 8077 add12 8212 add32 8213 add32r 8214 add4 8215 nnaddcl 9038 uzaddcl 9689 xaddass 9973 fztp 10182 ser3add 10648 expadd 10707 bernneq 10786 faclbnd6 10870 resqrexlemover 11240 clim2ser 11567 clim2ser2 11568 summodclem3 11610 isumsplit 11721 cvgratnnlemseq 11756 odd2np1lem 12102 cncrng 14249 ptolemy 15214 |
| Copyright terms: Public domain | W3C validator |