| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addass | GIF version | ||
| Description: Alias for ax-addass 7981, for naming consistency with addassi 8034. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addass 7981 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 + caddc 7882 |
| This theorem was proved from axioms: ax-addass 7981 |
| This theorem is referenced by: addassi 8034 addassd 8049 add12 8184 add32 8185 add32r 8186 add4 8187 nnaddcl 9010 uzaddcl 9660 xaddass 9944 fztp 10153 ser3add 10614 expadd 10673 bernneq 10752 faclbnd6 10836 resqrexlemover 11175 clim2ser 11502 clim2ser2 11503 summodclem3 11545 isumsplit 11656 cvgratnnlemseq 11691 odd2np1lem 12037 cncrng 14125 ptolemy 15060 |
| Copyright terms: Public domain | W3C validator |