| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addass | GIF version | ||
| Description: Alias for ax-addass 8047, for naming consistency with addassi 8100. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-addass 8047 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 (class class class)co 5957 ℂcc 7943 + caddc 7948 |
| This theorem was proved from axioms: ax-addass 8047 |
| This theorem is referenced by: addassi 8100 addassd 8115 add12 8250 add32 8251 add32r 8252 add4 8253 nnaddcl 9076 uzaddcl 9727 xaddass 10011 fztp 10220 ser3add 10689 expadd 10748 bernneq 10827 faclbnd6 10911 resqrexlemover 11396 clim2ser 11723 clim2ser2 11724 summodclem3 11766 isumsplit 11877 cvgratnnlemseq 11912 odd2np1lem 12258 cncrng 14406 ptolemy 15371 |
| Copyright terms: Public domain | W3C validator |