ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addass GIF version

Theorem addass 8002
Description: Alias for ax-addass 7974, for naming consistency with addassi 8027. (Contributed by NM, 10-Mar-2008.)
Assertion
Ref Expression
addass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Proof of Theorem addass
StepHypRef Expression
1 ax-addass 7974 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  (class class class)co 5918  cc 7870   + caddc 7875
This theorem was proved from axioms:  ax-addass 7974
This theorem is referenced by:  addassi  8027  addassd  8042  add12  8177  add32  8178  add32r  8179  add4  8180  nnaddcl  9002  uzaddcl  9651  xaddass  9935  fztp  10144  ser3add  10593  expadd  10652  bernneq  10731  faclbnd6  10815  resqrexlemover  11154  clim2ser  11480  clim2ser2  11481  summodclem3  11523  isumsplit  11634  cvgratnnlemseq  11669  odd2np1lem  12013  cncrng  14057  ptolemy  14959
  Copyright terms: Public domain W3C validator