| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axaddass | GIF version | ||
| Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 8047 be used later. Instead, use addass 8075. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axaddass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnqs 7974 | . 2 ⊢ ℂ = ((R × R) / ◡ E ) | |
| 2 | addcnsrec 7975 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ([〈𝑥, 𝑦〉]◡ E + [〈𝑧, 𝑤〉]◡ E ) = [〈(𝑥 +R 𝑧), (𝑦 +R 𝑤)〉]◡ E ) | |
| 3 | addcnsrec 7975 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ([〈𝑧, 𝑤〉]◡ E + [〈𝑣, 𝑢〉]◡ E ) = [〈(𝑧 +R 𝑣), (𝑤 +R 𝑢)〉]◡ E ) | |
| 4 | addcnsrec 7975 | . 2 ⊢ ((((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ([〈(𝑥 +R 𝑧), (𝑦 +R 𝑤)〉]◡ E + [〈𝑣, 𝑢〉]◡ E ) = [〈((𝑥 +R 𝑧) +R 𝑣), ((𝑦 +R 𝑤) +R 𝑢)〉]◡ E ) | |
| 5 | addcnsrec 7975 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) → ([〈𝑥, 𝑦〉]◡ E + [〈(𝑧 +R 𝑣), (𝑤 +R 𝑢)〉]◡ E ) = [〈(𝑥 +R (𝑧 +R 𝑣)), (𝑦 +R (𝑤 +R 𝑢))〉]◡ E ) | |
| 6 | addclsr 7886 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R) → (𝑥 +R 𝑧) ∈ R) | |
| 7 | addclsr 7886 | . . . 4 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R) → (𝑦 +R 𝑤) ∈ R) | |
| 8 | 6, 7 | anim12i 338 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑧 ∈ R) ∧ (𝑦 ∈ R ∧ 𝑤 ∈ R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R)) |
| 9 | 8 | an4s 588 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R)) |
| 10 | addclsr 7886 | . . . 4 ⊢ ((𝑧 ∈ R ∧ 𝑣 ∈ R) → (𝑧 +R 𝑣) ∈ R) | |
| 11 | addclsr 7886 | . . . 4 ⊢ ((𝑤 ∈ R ∧ 𝑢 ∈ R) → (𝑤 +R 𝑢) ∈ R) | |
| 12 | 10, 11 | anim12i 338 | . . 3 ⊢ (((𝑧 ∈ R ∧ 𝑣 ∈ R) ∧ (𝑤 ∈ R ∧ 𝑢 ∈ R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) |
| 13 | 12 | an4s 588 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) |
| 14 | addasssrg 7889 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R ∧ 𝑣 ∈ R) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣))) | |
| 15 | 14 | 3adant3r 1238 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣))) |
| 16 | 15 | 3adant2r 1236 | . . 3 ⊢ ((𝑥 ∈ R ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣))) |
| 17 | 16 | 3adant1r 1234 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣))) |
| 18 | addasssrg 7889 | . . . . 5 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R ∧ 𝑢 ∈ R) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢))) | |
| 19 | 18 | 3adant3l 1237 | . . . 4 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢))) |
| 20 | 19 | 3adant2l 1235 | . . 3 ⊢ ((𝑦 ∈ R ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢))) |
| 21 | 20 | 3adant1l 1233 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢))) |
| 22 | 1, 2, 3, 4, 5, 9, 13, 17, 21 | ecoviass 6745 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 E cep 4342 ◡ccnv 4682 (class class class)co 5957 Rcnr 7430 +R cplr 7434 ℂcc 7943 + caddc 7948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-eprel 4344 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-1o 6515 df-2o 6516 df-oadd 6519 df-omul 6520 df-er 6633 df-ec 6635 df-qs 6639 df-ni 7437 df-pli 7438 df-mi 7439 df-lti 7440 df-plpq 7477 df-mpq 7478 df-enq 7480 df-nqqs 7481 df-plqqs 7482 df-mqqs 7483 df-1nqqs 7484 df-rq 7485 df-ltnqqs 7486 df-enq0 7557 df-nq0 7558 df-0nq0 7559 df-plq0 7560 df-mq0 7561 df-inp 7599 df-iplp 7601 df-enr 7859 df-nr 7860 df-plr 7861 df-c 7951 df-add 7956 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |