ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axaddass GIF version

Theorem axaddass 7813
Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 7855 be used later. Instead, use addass 7883. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axaddass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Proof of Theorem axaddass
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 7782 . 2 ℂ = ((R × R) / E )
2 addcnsrec 7783 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E + [⟨𝑧, 𝑤⟩] E ) = [⟨(𝑥 +R 𝑧), (𝑦 +R 𝑤)⟩] E )
3 addcnsrec 7783 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ([⟨𝑧, 𝑤⟩] E + [⟨𝑣, 𝑢⟩] E ) = [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E )
4 addcnsrec 7783 . 2 ((((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R) ∧ (𝑣R𝑢R)) → ([⟨(𝑥 +R 𝑧), (𝑦 +R 𝑤)⟩] E + [⟨𝑣, 𝑢⟩] E ) = [⟨((𝑥 +R 𝑧) +R 𝑣), ((𝑦 +R 𝑤) +R 𝑢)⟩] E )
5 addcnsrec 7783 . 2 (((𝑥R𝑦R) ∧ ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) → ([⟨𝑥, 𝑦⟩] E + [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E ) = [⟨(𝑥 +R (𝑧 +R 𝑣)), (𝑦 +R (𝑤 +R 𝑢))⟩] E )
6 addclsr 7694 . . . 4 ((𝑥R𝑧R) → (𝑥 +R 𝑧) ∈ R)
7 addclsr 7694 . . . 4 ((𝑦R𝑤R) → (𝑦 +R 𝑤) ∈ R)
86, 7anim12i 336 . . 3 (((𝑥R𝑧R) ∧ (𝑦R𝑤R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R))
98an4s 578 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R))
10 addclsr 7694 . . . 4 ((𝑧R𝑣R) → (𝑧 +R 𝑣) ∈ R)
11 addclsr 7694 . . . 4 ((𝑤R𝑢R) → (𝑤 +R 𝑢) ∈ R)
1210, 11anim12i 336 . . 3 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
1312an4s 578 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
14 addasssrg 7697 . . . . 5 ((𝑥R𝑧R𝑣R) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣)))
15143adant3r 1225 . . . 4 ((𝑥R𝑧R ∧ (𝑣R𝑢R)) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣)))
16153adant2r 1223 . . 3 ((𝑥R ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣)))
17163adant1r 1221 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣)))
18 addasssrg 7697 . . . . 5 ((𝑦R𝑤R𝑢R) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢)))
19183adant3l 1224 . . . 4 ((𝑦R𝑤R ∧ (𝑣R𝑢R)) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢)))
20193adant2l 1222 . . 3 ((𝑦R ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢)))
21203adant1l 1220 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢)))
221, 2, 3, 4, 5, 9, 13, 17, 21ecoviass 6611 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136   E cep 4265  ccnv 4603  (class class class)co 5842  Rcnr 7238   +R cplr 7242  cc 7751   + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-enr 7667  df-nr 7668  df-plr 7669  df-c 7759  df-add 7764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator