ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axaddass GIF version

Theorem axaddass 7386
Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 7426 be used later. Instead, use addass 7451. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
axaddass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Proof of Theorem axaddass
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcnqs 7357 . 2 ℂ = ((R × R) / E )
2 addcnsrec 7358 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ([⟨𝑥, 𝑦⟩] E + [⟨𝑧, 𝑤⟩] E ) = [⟨(𝑥 +R 𝑧), (𝑦 +R 𝑤)⟩] E )
3 addcnsrec 7358 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ([⟨𝑧, 𝑤⟩] E + [⟨𝑣, 𝑢⟩] E ) = [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E )
4 addcnsrec 7358 . 2 ((((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R) ∧ (𝑣R𝑢R)) → ([⟨(𝑥 +R 𝑧), (𝑦 +R 𝑤)⟩] E + [⟨𝑣, 𝑢⟩] E ) = [⟨((𝑥 +R 𝑧) +R 𝑣), ((𝑦 +R 𝑤) +R 𝑢)⟩] E )
5 addcnsrec 7358 . 2 (((𝑥R𝑦R) ∧ ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) → ([⟨𝑥, 𝑦⟩] E + [⟨(𝑧 +R 𝑣), (𝑤 +R 𝑢)⟩] E ) = [⟨(𝑥 +R (𝑧 +R 𝑣)), (𝑦 +R (𝑤 +R 𝑢))⟩] E )
6 addclsr 7278 . . . 4 ((𝑥R𝑧R) → (𝑥 +R 𝑧) ∈ R)
7 addclsr 7278 . . . 4 ((𝑦R𝑤R) → (𝑦 +R 𝑤) ∈ R)
86, 7anim12i 331 . . 3 (((𝑥R𝑧R) ∧ (𝑦R𝑤R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R))
98an4s 555 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R))
10 addclsr 7278 . . . 4 ((𝑧R𝑣R) → (𝑧 +R 𝑣) ∈ R)
11 addclsr 7278 . . . 4 ((𝑤R𝑢R) → (𝑤 +R 𝑢) ∈ R)
1210, 11anim12i 331 . . 3 (((𝑧R𝑣R) ∧ (𝑤R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
1312an4s 555 . 2 (((𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R))
14 addasssrg 7281 . . . . 5 ((𝑥R𝑧R𝑣R) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣)))
15143adant3r 1171 . . . 4 ((𝑥R𝑧R ∧ (𝑣R𝑢R)) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣)))
16153adant2r 1169 . . 3 ((𝑥R ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣)))
17163adant1r 1167 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣)))
18 addasssrg 7281 . . . . 5 ((𝑦R𝑤R𝑢R) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢)))
19183adant3l 1170 . . . 4 ((𝑦R𝑤R ∧ (𝑣R𝑢R)) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢)))
20193adant2l 1168 . . 3 ((𝑦R ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢)))
21203adant1l 1166 . 2 (((𝑥R𝑦R) ∧ (𝑧R𝑤R) ∧ (𝑣R𝑢R)) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢)))
221, 2, 3, 4, 5, 9, 13, 17, 21ecoviass 6382 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 924   = wceq 1289  wcel 1438   E cep 4105  ccnv 4427  (class class class)co 5634  Rcnr 6835   +R cplr 6839  cc 7327   + caddc 7332
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-eprel 4107  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-irdg 6117  df-1o 6163  df-2o 6164  df-oadd 6167  df-omul 6168  df-er 6272  df-ec 6274  df-qs 6278  df-ni 6842  df-pli 6843  df-mi 6844  df-lti 6845  df-plpq 6882  df-mpq 6883  df-enq 6885  df-nqqs 6886  df-plqqs 6887  df-mqqs 6888  df-1nqqs 6889  df-rq 6890  df-ltnqqs 6891  df-enq0 6962  df-nq0 6963  df-0nq0 6964  df-plq0 6965  df-mq0 6966  df-inp 7004  df-iplp 7006  df-enr 7251  df-nr 7252  df-plr 7253  df-c 7335  df-add 7340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator