![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axaddass | GIF version |
Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 7909 be used later. Instead, use addass 7937. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axaddass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcnqs 7836 | . 2 ⊢ ℂ = ((R × R) / ◡ E ) | |
2 | addcnsrec 7837 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ([〈𝑥, 𝑦〉]◡ E + [〈𝑧, 𝑤〉]◡ E ) = [〈(𝑥 +R 𝑧), (𝑦 +R 𝑤)〉]◡ E ) | |
3 | addcnsrec 7837 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ([〈𝑧, 𝑤〉]◡ E + [〈𝑣, 𝑢〉]◡ E ) = [〈(𝑧 +R 𝑣), (𝑤 +R 𝑢)〉]◡ E ) | |
4 | addcnsrec 7837 | . 2 ⊢ ((((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ([〈(𝑥 +R 𝑧), (𝑦 +R 𝑤)〉]◡ E + [〈𝑣, 𝑢〉]◡ E ) = [〈((𝑥 +R 𝑧) +R 𝑣), ((𝑦 +R 𝑤) +R 𝑢)〉]◡ E ) | |
5 | addcnsrec 7837 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) → ([〈𝑥, 𝑦〉]◡ E + [〈(𝑧 +R 𝑣), (𝑤 +R 𝑢)〉]◡ E ) = [〈(𝑥 +R (𝑧 +R 𝑣)), (𝑦 +R (𝑤 +R 𝑢))〉]◡ E ) | |
6 | addclsr 7748 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R) → (𝑥 +R 𝑧) ∈ R) | |
7 | addclsr 7748 | . . . 4 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R) → (𝑦 +R 𝑤) ∈ R) | |
8 | 6, 7 | anim12i 338 | . . 3 ⊢ (((𝑥 ∈ R ∧ 𝑧 ∈ R) ∧ (𝑦 ∈ R ∧ 𝑤 ∈ R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R)) |
9 | 8 | an4s 588 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R)) → ((𝑥 +R 𝑧) ∈ R ∧ (𝑦 +R 𝑤) ∈ R)) |
10 | addclsr 7748 | . . . 4 ⊢ ((𝑧 ∈ R ∧ 𝑣 ∈ R) → (𝑧 +R 𝑣) ∈ R) | |
11 | addclsr 7748 | . . . 4 ⊢ ((𝑤 ∈ R ∧ 𝑢 ∈ R) → (𝑤 +R 𝑢) ∈ R) | |
12 | 10, 11 | anim12i 338 | . . 3 ⊢ (((𝑧 ∈ R ∧ 𝑣 ∈ R) ∧ (𝑤 ∈ R ∧ 𝑢 ∈ R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) |
13 | 12 | an4s 588 | . 2 ⊢ (((𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑧 +R 𝑣) ∈ R ∧ (𝑤 +R 𝑢) ∈ R)) |
14 | addasssrg 7751 | . . . . 5 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R ∧ 𝑣 ∈ R) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣))) | |
15 | 14 | 3adant3r 1235 | . . . 4 ⊢ ((𝑥 ∈ R ∧ 𝑧 ∈ R ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣))) |
16 | 15 | 3adant2r 1233 | . . 3 ⊢ ((𝑥 ∈ R ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣))) |
17 | 16 | 3adant1r 1231 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑥 +R 𝑧) +R 𝑣) = (𝑥 +R (𝑧 +R 𝑣))) |
18 | addasssrg 7751 | . . . . 5 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R ∧ 𝑢 ∈ R) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢))) | |
19 | 18 | 3adant3l 1234 | . . . 4 ⊢ ((𝑦 ∈ R ∧ 𝑤 ∈ R ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢))) |
20 | 19 | 3adant2l 1232 | . . 3 ⊢ ((𝑦 ∈ R ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢))) |
21 | 20 | 3adant1l 1230 | . 2 ⊢ (((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧ (𝑧 ∈ R ∧ 𝑤 ∈ R) ∧ (𝑣 ∈ R ∧ 𝑢 ∈ R)) → ((𝑦 +R 𝑤) +R 𝑢) = (𝑦 +R (𝑤 +R 𝑢))) |
22 | 1, 2, 3, 4, 5, 9, 13, 17, 21 | ecoviass 6641 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 E cep 4286 ◡ccnv 4624 (class class class)co 5871 Rcnr 7292 +R cplr 7296 ℂcc 7805 + caddc 7810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4117 ax-sep 4120 ax-nul 4128 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-iinf 4586 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-tr 4101 df-eprel 4288 df-id 4292 df-po 4295 df-iso 4296 df-iord 4365 df-on 4367 df-suc 4370 df-iom 4589 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5176 df-fun 5216 df-fn 5217 df-f 5218 df-f1 5219 df-fo 5220 df-f1o 5221 df-fv 5222 df-ov 5874 df-oprab 5875 df-mpo 5876 df-1st 6137 df-2nd 6138 df-recs 6302 df-irdg 6367 df-1o 6413 df-2o 6414 df-oadd 6417 df-omul 6418 df-er 6531 df-ec 6533 df-qs 6537 df-ni 7299 df-pli 7300 df-mi 7301 df-lti 7302 df-plpq 7339 df-mpq 7340 df-enq 7342 df-nqqs 7343 df-plqqs 7344 df-mqqs 7345 df-1nqqs 7346 df-rq 7347 df-ltnqqs 7348 df-enq0 7419 df-nq0 7420 df-0nq0 7421 df-plq0 7422 df-mq0 7423 df-inp 7461 df-iplp 7463 df-enr 7721 df-nr 7722 df-plr 7723 df-c 7813 df-add 7818 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |