| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > arch | GIF version | ||
| Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| arch | ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-arch 8114 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) | |
| 2 | dfnn2 9108 | . . . 4 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 3 | 2 | rexeqi 2733 | . . 3 ⊢ (∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛 ↔ ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) |
| 4 | 1, 3 | sylibr 134 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛) |
| 5 | nnre 9113 | . . . 4 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
| 6 | ltxrlt 8208 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝐴 < 𝑛 ↔ 𝐴 <ℝ 𝑛)) | |
| 7 | 5, 6 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐴 < 𝑛 ↔ 𝐴 <ℝ 𝑛)) |
| 8 | 7 | rexbidva 2527 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑛 ∈ ℕ 𝐴 < 𝑛 ↔ ∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛)) |
| 9 | 4, 8 | mpbird 167 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∃wrex 2509 ∩ cint 3922 class class class wbr 4082 (class class class)co 6000 ℝcr 7994 1c1 7996 + caddc 7998 <ℝ cltrr 7999 < clt 8177 ℕcn 9106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-arch 8114 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-xp 4724 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 |
| This theorem is referenced by: nnrecl 9363 bndndx 9364 btwnz 9562 expnbnd 10880 cvg1nlemres 11491 cvg1n 11492 resqrexlemga 11529 fsum3cvg3 11902 divcnv 12003 efcllem 12165 alzdvds 12360 dvdsbnd 12472 |
| Copyright terms: Public domain | W3C validator |