| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > arch | GIF version | ||
| Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| arch | ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-arch 8015 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) | |
| 2 | dfnn2 9009 | . . . 4 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 3 | 2 | rexeqi 2698 | . . 3 ⊢ (∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛 ↔ ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) |
| 4 | 1, 3 | sylibr 134 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛) |
| 5 | nnre 9014 | . . . 4 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
| 6 | ltxrlt 8109 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝐴 < 𝑛 ↔ 𝐴 <ℝ 𝑛)) | |
| 7 | 5, 6 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐴 < 𝑛 ↔ 𝐴 <ℝ 𝑛)) |
| 8 | 7 | rexbidva 2494 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑛 ∈ ℕ 𝐴 < 𝑛 ↔ ∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛)) |
| 9 | 4, 8 | mpbird 167 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∃wrex 2476 ∩ cint 3875 class class class wbr 4034 (class class class)co 5925 ℝcr 7895 1c1 7897 + caddc 7899 <ℝ cltrr 7900 < clt 8078 ℕcn 9007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 |
| This theorem is referenced by: nnrecl 9264 bndndx 9265 btwnz 9462 expnbnd 10772 cvg1nlemres 11167 cvg1n 11168 resqrexlemga 11205 fsum3cvg3 11578 divcnv 11679 efcllem 11841 alzdvds 12036 dvdsbnd 12148 |
| Copyright terms: Public domain | W3C validator |