ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arch GIF version

Theorem arch 9237
Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
arch (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
Distinct variable group:   𝐴,𝑛

Proof of Theorem arch
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-arch 7991 . . 3 (𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
2 dfnn2 8984 . . . 4 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
32rexeqi 2695 . . 3 (∃𝑛 ∈ ℕ 𝐴 < 𝑛 ↔ ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
41, 3sylibr 134 . 2 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
5 nnre 8989 . . . 4 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
6 ltxrlt 8085 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝐴 < 𝑛𝐴 < 𝑛))
75, 6sylan2 286 . . 3 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐴 < 𝑛𝐴 < 𝑛))
87rexbidva 2491 . 2 (𝐴 ∈ ℝ → (∃𝑛 ∈ ℕ 𝐴 < 𝑛 ↔ ∃𝑛 ∈ ℕ 𝐴 < 𝑛))
94, 8mpbird 167 1 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2164  {cab 2179  wral 2472  wrex 2473   cint 3870   class class class wbr 4029  (class class class)co 5918  cr 7871  1c1 7873   + caddc 7875   < cltrr 7876   < clt 8054  cn 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-xp 4665  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983
This theorem is referenced by:  nnrecl  9238  bndndx  9239  btwnz  9436  expnbnd  10734  cvg1nlemres  11129  cvg1n  11130  resqrexlemga  11167  fsum3cvg3  11539  divcnv  11640  efcllem  11802  alzdvds  11996  dvdsbnd  12093
  Copyright terms: Public domain W3C validator