| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > arch | GIF version | ||
| Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| arch | ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-arch 8074 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) | |
| 2 | dfnn2 9068 | . . . 4 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 3 | 2 | rexeqi 2708 | . . 3 ⊢ (∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛 ↔ ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) |
| 4 | 1, 3 | sylibr 134 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛) |
| 5 | nnre 9073 | . . . 4 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
| 6 | ltxrlt 8168 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝐴 < 𝑛 ↔ 𝐴 <ℝ 𝑛)) | |
| 7 | 5, 6 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐴 < 𝑛 ↔ 𝐴 <ℝ 𝑛)) |
| 8 | 7 | rexbidva 2504 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑛 ∈ ℕ 𝐴 < 𝑛 ↔ ∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛)) |
| 9 | 4, 8 | mpbird 167 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 {cab 2192 ∀wral 2485 ∃wrex 2486 ∩ cint 3894 class class class wbr 4054 (class class class)co 5962 ℝcr 7954 1c1 7956 + caddc 7958 <ℝ cltrr 7959 < clt 8137 ℕcn 9066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 ax-arch 8074 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-xp 4694 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-inn 9067 |
| This theorem is referenced by: nnrecl 9323 bndndx 9324 btwnz 9522 expnbnd 10840 cvg1nlemres 11381 cvg1n 11382 resqrexlemga 11419 fsum3cvg3 11792 divcnv 11893 efcllem 12055 alzdvds 12250 dvdsbnd 12362 |
| Copyright terms: Public domain | W3C validator |