| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > arch | GIF version | ||
| Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| arch | ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-arch 8044 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) | |
| 2 | dfnn2 9038 | . . . 4 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 3 | 2 | rexeqi 2707 | . . 3 ⊢ (∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛 ↔ ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) |
| 4 | 1, 3 | sylibr 134 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛) |
| 5 | nnre 9043 | . . . 4 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
| 6 | ltxrlt 8138 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝐴 < 𝑛 ↔ 𝐴 <ℝ 𝑛)) | |
| 7 | 5, 6 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐴 < 𝑛 ↔ 𝐴 <ℝ 𝑛)) |
| 8 | 7 | rexbidva 2503 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑛 ∈ ℕ 𝐴 < 𝑛 ↔ ∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛)) |
| 9 | 4, 8 | mpbird 167 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 {cab 2191 ∀wral 2484 ∃wrex 2485 ∩ cint 3885 class class class wbr 4044 (class class class)co 5944 ℝcr 7924 1c1 7926 + caddc 7928 <ℝ cltrr 7929 < clt 8107 ℕcn 9036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 ax-arch 8044 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-xp 4681 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 |
| This theorem is referenced by: nnrecl 9293 bndndx 9294 btwnz 9492 expnbnd 10808 cvg1nlemres 11296 cvg1n 11297 resqrexlemga 11334 fsum3cvg3 11707 divcnv 11808 efcllem 11970 alzdvds 12165 dvdsbnd 12277 |
| Copyright terms: Public domain | W3C validator |