ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arch GIF version

Theorem arch 9322
Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
arch (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
Distinct variable group:   𝐴,𝑛

Proof of Theorem arch
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-arch 8074 . . 3 (𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
2 dfnn2 9068 . . . 4 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
32rexeqi 2708 . . 3 (∃𝑛 ∈ ℕ 𝐴 < 𝑛 ↔ ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
41, 3sylibr 134 . 2 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
5 nnre 9073 . . . 4 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
6 ltxrlt 8168 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝐴 < 𝑛𝐴 < 𝑛))
75, 6sylan2 286 . . 3 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐴 < 𝑛𝐴 < 𝑛))
87rexbidva 2504 . 2 (𝐴 ∈ ℝ → (∃𝑛 ∈ ℕ 𝐴 < 𝑛 ↔ ∃𝑛 ∈ ℕ 𝐴 < 𝑛))
94, 8mpbird 167 1 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2177  {cab 2192  wral 2485  wrex 2486   cint 3894   class class class wbr 4054  (class class class)co 5962  cr 7954  1c1 7956   + caddc 7958   < cltrr 7959   < clt 8137  cn 9066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052  ax-arch 8074
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-xp 4694  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067
This theorem is referenced by:  nnrecl  9323  bndndx  9324  btwnz  9522  expnbnd  10840  cvg1nlemres  11381  cvg1n  11382  resqrexlemga  11419  fsum3cvg3  11792  divcnv  11893  efcllem  12055  alzdvds  12250  dvdsbnd  12362
  Copyright terms: Public domain W3C validator