ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arch GIF version

Theorem arch 9246
Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
arch (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
Distinct variable group:   𝐴,𝑛

Proof of Theorem arch
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-arch 7998 . . 3 (𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
2 dfnn2 8992 . . . 4 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
32rexeqi 2698 . . 3 (∃𝑛 ∈ ℕ 𝐴 < 𝑛 ↔ ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
41, 3sylibr 134 . 2 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
5 nnre 8997 . . . 4 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
6 ltxrlt 8092 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝐴 < 𝑛𝐴 < 𝑛))
75, 6sylan2 286 . . 3 ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐴 < 𝑛𝐴 < 𝑛))
87rexbidva 2494 . 2 (𝐴 ∈ ℝ → (∃𝑛 ∈ ℕ 𝐴 < 𝑛 ↔ ∃𝑛 ∈ ℕ 𝐴 < 𝑛))
94, 8mpbird 167 1 (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2167  {cab 2182  wral 2475  wrex 2476   cint 3874   class class class wbr 4033  (class class class)co 5922  cr 7878  1c1 7880   + caddc 7882   < cltrr 7883   < clt 8061  cn 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-arch 7998
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-xp 4669  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991
This theorem is referenced by:  nnrecl  9247  bndndx  9248  btwnz  9445  expnbnd  10755  cvg1nlemres  11150  cvg1n  11151  resqrexlemga  11188  fsum3cvg3  11561  divcnv  11662  efcllem  11824  alzdvds  12019  dvdsbnd  12123
  Copyright terms: Public domain W3C validator