| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > arch | GIF version | ||
| Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| arch | ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-arch 8043 | . . 3 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) | |
| 2 | dfnn2 9037 | . . . 4 ⊢ ℕ = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 3 | 2 | rexeqi 2706 | . . 3 ⊢ (∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛 ↔ ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) |
| 4 | 1, 3 | sylibr 134 | . 2 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛) |
| 5 | nnre 9042 | . . . 4 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℝ) | |
| 6 | ltxrlt 8137 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (𝐴 < 𝑛 ↔ 𝐴 <ℝ 𝑛)) | |
| 7 | 5, 6 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝑛 ∈ ℕ) → (𝐴 < 𝑛 ↔ 𝐴 <ℝ 𝑛)) |
| 8 | 7 | rexbidva 2502 | . 2 ⊢ (𝐴 ∈ ℝ → (∃𝑛 ∈ ℕ 𝐴 < 𝑛 ↔ ∃𝑛 ∈ ℕ 𝐴 <ℝ 𝑛)) |
| 9 | 4, 8 | mpbird 167 | 1 ⊢ (𝐴 ∈ ℝ → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2175 {cab 2190 ∀wral 2483 ∃wrex 2484 ∩ cint 3884 class class class wbr 4043 (class class class)co 5943 ℝcr 7923 1c1 7925 + caddc 7927 <ℝ cltrr 7928 < clt 8106 ℕcn 9035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-arch 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-xp 4680 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 |
| This theorem is referenced by: nnrecl 9292 bndndx 9293 btwnz 9491 expnbnd 10806 cvg1nlemres 11267 cvg1n 11268 resqrexlemga 11305 fsum3cvg3 11678 divcnv 11779 efcllem 11941 alzdvds 12136 dvdsbnd 12248 |
| Copyright terms: Public domain | W3C validator |