Step | Hyp | Ref
| Expression |
1 | | elreal 7790 |
. . 3
⊢ (𝐴 ∈ ℝ ↔
∃𝑧 ∈
R 〈𝑧,
0R〉 = 𝐴) |
2 | 1 | biimpi 119 |
. 2
⊢ (𝐴 ∈ ℝ →
∃𝑧 ∈
R 〈𝑧,
0R〉 = 𝐴) |
3 | | archsr 7744 |
. . . 4
⊢ (𝑧 ∈ R →
∃𝑤 ∈
N 𝑧
<R [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ) |
4 | 3 | ad2antrl 487 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ (𝑧 ∈ R ∧
〈𝑧,
0R〉 = 𝐴)) → ∃𝑤 ∈ N 𝑧 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ) |
5 | | simplrr 531 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ (𝑧 ∈ R ∧
〈𝑧,
0R〉 = 𝐴)) ∧ (𝑤 ∈ N ∧ 𝑧 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R )) → 〈𝑧, 0R〉 = 𝐴) |
6 | | simprr 527 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ (𝑧 ∈ R ∧
〈𝑧,
0R〉 = 𝐴)) ∧ (𝑤 ∈ N ∧ 𝑧 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R )) → 𝑧 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ) |
7 | | ltresr 7801 |
. . . . . 6
⊢
(〈𝑧,
0R〉 <ℝ
〈[〈(〈{𝑙
∣ 𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉 ↔ 𝑧 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ) |
8 | 6, 7 | sylibr 133 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ (𝑧 ∈ R ∧
〈𝑧,
0R〉 = 𝐴)) ∧ (𝑤 ∈ N ∧ 𝑧 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R )) → 〈𝑧, 0R〉
<ℝ 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ,
0R〉) |
9 | 5, 8 | eqbrtrrd 4013 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ (𝑧 ∈ R ∧
〈𝑧,
0R〉 = 𝐴)) ∧ (𝑤 ∈ N ∧ 𝑧 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R )) → 𝐴 <ℝ
〈[〈(〈{𝑙
∣ 𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ,
0R〉) |
10 | | pitonn 7810 |
. . . . . 6
⊢ (𝑤 ∈ N →
〈[〈(〈{𝑙
∣ 𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
11 | 10 | ad2antrl 487 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ (𝑧 ∈ R ∧
〈𝑧,
0R〉 = 𝐴)) ∧ (𝑤 ∈ N ∧ 𝑧 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R )) → 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
12 | | simpr 109 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ (𝑧 ∈ R ∧
〈𝑧,
0R〉 = 𝐴)) ∧ (𝑤 ∈ N ∧ 𝑧 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R )) ∧ 𝑛 = 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉) → 𝑛 = 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ,
0R〉) |
13 | 12 | breq2d 4001 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ (𝑧 ∈ R ∧
〈𝑧,
0R〉 = 𝐴)) ∧ (𝑤 ∈ N ∧ 𝑧 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R )) ∧ 𝑛 = 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉) → (𝐴 <ℝ 𝑛 ↔ 𝐴 <ℝ
〈[〈(〈{𝑙
∣ 𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R ,
0R〉)) |
14 | 11, 13 | rspcedv 2838 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ (𝑧 ∈ R ∧
〈𝑧,
0R〉 = 𝐴)) ∧ (𝑤 ∈ N ∧ 𝑧 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R )) → (𝐴 <ℝ
〈[〈(〈{𝑙
∣ 𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R , 0R〉 →
∃𝑛 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛)) |
15 | 9, 14 | mpd 13 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ (𝑧 ∈ R ∧
〈𝑧,
0R〉 = 𝐴)) ∧ (𝑤 ∈ N ∧ 𝑧 <R
[〈(〈{𝑙 ∣
𝑙
<Q [〈𝑤, 1o〉]
~Q }, {𝑢 ∣ [〈𝑤, 1o〉]
~Q <Q 𝑢}〉 +P
1P), 1P〉]
~R )) → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) |
16 | 4, 15 | rexlimddv 2592 |
. 2
⊢ ((𝐴 ∈ ℝ ∧ (𝑧 ∈ R ∧
〈𝑧,
0R〉 = 𝐴)) → ∃𝑛 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) |
17 | 2, 16 | rexlimddv 2592 |
1
⊢ (𝐴 ∈ ℝ →
∃𝑛 ∈ ∩ {𝑥
∣ (1 ∈ 𝑥 ∧
∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 <ℝ 𝑛) |