ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axarch GIF version

Theorem axarch 7667
Description: Archimedean axiom. The Archimedean property is more naturally stated once we have defined . Unless we find another way to state it, we'll just use the right hand side of dfnn2 8690 in stating what we mean by "natural number" in the context of this axiom.

This construction-dependent theorem should not be referenced directly; instead, use ax-arch 7707. (Contributed by Jim Kingdon, 22-Apr-2020.) (New usage is discouraged.)

Assertion
Ref Expression
axarch (𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
Distinct variable group:   𝐴,𝑛,𝑥,𝑦

Proof of Theorem axarch
Dummy variables 𝑙 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal 7604 . . 3 (𝐴 ∈ ℝ ↔ ∃𝑧R𝑧, 0R⟩ = 𝐴)
21biimpi 119 . 2 (𝐴 ∈ ℝ → ∃𝑧R𝑧, 0R⟩ = 𝐴)
3 archsr 7558 . . . 4 (𝑧R → ∃𝑤N 𝑧 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
43ad2antrl 481 . . 3 ((𝐴 ∈ ℝ ∧ (𝑧R ∧ ⟨𝑧, 0R⟩ = 𝐴)) → ∃𝑤N 𝑧 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
5 simplrr 510 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑧R ∧ ⟨𝑧, 0R⟩ = 𝐴)) ∧ (𝑤N𝑧 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → ⟨𝑧, 0R⟩ = 𝐴)
6 simprr 506 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝑧R ∧ ⟨𝑧, 0R⟩ = 𝐴)) ∧ (𝑤N𝑧 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → 𝑧 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
7 ltresr 7615 . . . . . 6 (⟨𝑧, 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ↔ 𝑧 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
86, 7sylibr 133 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑧R ∧ ⟨𝑧, 0R⟩ = 𝐴)) ∧ (𝑤N𝑧 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → ⟨𝑧, 0R⟩ < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
95, 8eqbrtrrd 3922 . . . 4 (((𝐴 ∈ ℝ ∧ (𝑧R ∧ ⟨𝑧, 0R⟩ = 𝐴)) ∧ (𝑤N𝑧 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → 𝐴 < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
10 pitonn 7624 . . . . . 6 (𝑤N → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
1110ad2antrl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝑧R ∧ ⟨𝑧, 0R⟩ = 𝐴)) ∧ (𝑤N𝑧 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)})
12 simpr 109 . . . . . 6 ((((𝐴 ∈ ℝ ∧ (𝑧R ∧ ⟨𝑧, 0R⟩ = 𝐴)) ∧ (𝑤N𝑧 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) ∧ 𝑛 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) → 𝑛 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
1312breq2d 3911 . . . . 5 ((((𝐴 ∈ ℝ ∧ (𝑧R ∧ ⟨𝑧, 0R⟩ = 𝐴)) ∧ (𝑤N𝑧 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) ∧ 𝑛 = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) → (𝐴 < 𝑛𝐴 < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
1411, 13rspcedv 2767 . . . 4 (((𝐴 ∈ ℝ ∧ (𝑧R ∧ ⟨𝑧, 0R⟩ = 𝐴)) ∧ (𝑤N𝑧 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → (𝐴 < ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛))
159, 14mpd 13 . . 3 (((𝐴 ∈ ℝ ∧ (𝑧R ∧ ⟨𝑧, 0R⟩ = 𝐴)) ∧ (𝑤N𝑧 <R [⟨(⟨{𝑙𝑙 <Q [⟨𝑤, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑤, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )) → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
164, 15rexlimddv 2531 . 2 ((𝐴 ∈ ℝ ∧ (𝑧R ∧ ⟨𝑧, 0R⟩ = 𝐴)) → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
172, 16rexlimddv 2531 1 (𝐴 ∈ ℝ → ∃𝑛 {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 < 𝑛)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1316  wcel 1465  {cab 2103  wral 2393  wrex 2394  cop 3500   cint 3741   class class class wbr 3899  (class class class)co 5742  1oc1o 6274  [cec 6395  Ncnpi 7048   ~Q ceq 7055   <Q cltq 7061  1Pc1p 7068   +P cpp 7069   ~R cer 7072  Rcnr 7073  0Rc0r 7074   <R cltr 7079  cr 7587  1c1 7589   + caddc 7591   < cltrr 7592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-2o 6282  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-enq0 7200  df-nq0 7201  df-0nq0 7202  df-plq0 7203  df-mq0 7204  df-inp 7242  df-i1p 7243  df-iplp 7244  df-iltp 7246  df-enr 7502  df-nr 7503  df-plr 7504  df-ltr 7506  df-0r 7507  df-1r 7508  df-c 7594  df-1 7596  df-r 7598  df-add 7599  df-lt 7601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator