ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgre GIF version

Theorem caucvgre 11146
Description: Convergence of real sequences.

A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term.

(Contributed by Jim Kingdon, 19-Jul-2021.)

Hypotheses
Ref Expression
caucvgre.f (𝜑𝐹:ℕ⟶ℝ)
caucvgre.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
Assertion
Ref Expression
caucvgre (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Distinct variable groups:   𝑖,𝐹,𝑗,𝑥,𝑦   𝑘,𝐹,𝑖,𝑥,𝑦   𝑛,𝐹,𝑘   𝜑,𝑘,𝑛   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑖,𝑗)

Proof of Theorem caucvgre
Dummy variables 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfnn2 8992 . . . 4 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
2 caucvgre.f . . . 4 (𝜑𝐹:ℕ⟶ℝ)
3 caucvgre.cau . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
42, 3caucvgrelemcau 11145 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
51, 2, 4ax-caucvg 7999 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
6 ralrp 9750 . . . . 5 (∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
7 0re 8026 . . . . . . . 8 0 ∈ ℝ
8 ltxrlt 8092 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 < 𝑥 ↔ 0 < 𝑥))
97, 8mpan 424 . . . . . . 7 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ 0 < 𝑥))
109imbi1d 231 . . . . . 6 (𝑥 ∈ ℝ → ((0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))) ↔ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))))
1110ralbiia 2511 . . . . 5 (∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))) ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
126, 11bitri 184 . . . 4 (∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
1312rexbii 2504 . . 3 (∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
145, 13sylibr 134 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
15 simpr 110 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
1615peano2nnd 9005 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
17 uznnssnn 9651 . . . . . . . . 9 ((𝑚 + 1) ∈ ℕ → (ℤ‘(𝑚 + 1)) ⊆ ℕ)
18 ssralv 3247 . . . . . . . . 9 ((ℤ‘(𝑚 + 1)) ⊆ ℕ → (∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑘 ∈ (ℤ‘(𝑚 + 1))(𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
1916, 17, 183syl 17 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑘 ∈ (ℤ‘(𝑚 + 1))(𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
20 eluznn 9674 . . . . . . . . . . . . . 14 (((𝑚 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ)
2116, 20sylan 283 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ)
22 simplr 528 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑚 ∈ ℕ)
2322peano2nnd 9005 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
2423nnzd 9447 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 + 1) ∈ ℤ)
25 eluz1 9605 . . . . . . . . . . . . . . . 16 ((𝑚 + 1) ∈ ℤ → (𝑘 ∈ (ℤ‘(𝑚 + 1)) ↔ (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘)))
2624, 25syl 14 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ (ℤ‘(𝑚 + 1)) ↔ (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘)))
2726biimpd 144 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ (ℤ‘(𝑚 + 1)) → (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘)))
2827impancom 260 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝑘 ∈ ℕ → (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘)))
2921, 28mpd 13 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘))
3029simprd 114 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝑚 + 1) ≤ 𝑘)
31 nnre 8997 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
3231ad2antlr 489 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑚 ∈ ℝ)
33 simpr 110 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
3433nnred 9003 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
35 1re 8025 . . . . . . . . . . . . . . 15 1 ∈ ℝ
36 ltadd1 8456 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑚 < 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
3735, 36mp3an3 1337 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑚 < 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
3832, 34, 37syl2anc 411 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 < 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
39 nnleltp1 9385 . . . . . . . . . . . . . 14 (((𝑚 + 1) ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑚 + 1) ≤ 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
4023, 33, 39syl2anc 411 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑚 + 1) ≤ 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
4138, 40bitr4d 191 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 < 𝑘 ↔ (𝑚 + 1) ≤ 𝑘))
4221, 41syldan 282 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝑚 < 𝑘 ↔ (𝑚 + 1) ≤ 𝑘))
4330, 42mpbird 167 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑚 < 𝑘)
44 nnre 8997 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
45 ltxrlt 8092 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑚 < 𝑘𝑚 < 𝑘))
4631, 44, 45syl2an 289 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑚 < 𝑘𝑚 < 𝑘))
4746adantll 476 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 < 𝑘𝑚 < 𝑘))
482ad4antr 494 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
4948, 33ffvelcdmd 5698 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
50 simpllr 534 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ ℝ)
5150adantr 276 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑦 ∈ ℝ)
52 rpre 9735 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
5352ad3antlr 493 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5451, 53readdcld 8056 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑦 + 𝑥) ∈ ℝ)
55 ltxrlt 8092 . . . . . . . . . . . . . . 15 (((𝐹𝑘) ∈ ℝ ∧ (𝑦 + 𝑥) ∈ ℝ) → ((𝐹𝑘) < (𝑦 + 𝑥) ↔ (𝐹𝑘) < (𝑦 + 𝑥)))
5649, 54, 55syl2anc 411 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < (𝑦 + 𝑥) ↔ (𝐹𝑘) < (𝑦 + 𝑥)))
5749, 53readdcld 8056 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) + 𝑥) ∈ ℝ)
58 ltxrlt 8092 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ ((𝐹𝑘) + 𝑥) ∈ ℝ) → (𝑦 < ((𝐹𝑘) + 𝑥) ↔ 𝑦 < ((𝐹𝑘) + 𝑥)))
5951, 57, 58syl2anc 411 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑦 < ((𝐹𝑘) + 𝑥) ↔ 𝑦 < ((𝐹𝑘) + 𝑥)))
6056, 59anbi12d 473 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
6147, 60imbi12d 234 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
6261biimprd 158 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
6321, 62syldan 282 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → ((𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
6443, 63mpid 42 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → ((𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
6564ralimdva 2564 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ (ℤ‘(𝑚 + 1))(𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑘 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
6619, 65syld 45 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑘 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
67 fveq2 5558 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
6867breq1d 4043 . . . . . . . . 9 (𝑘 = 𝑖 → ((𝐹𝑘) < (𝑦 + 𝑥) ↔ (𝐹𝑖) < (𝑦 + 𝑥)))
6967oveq1d 5937 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝐹𝑘) + 𝑥) = ((𝐹𝑖) + 𝑥))
7069breq2d 4045 . . . . . . . . 9 (𝑘 = 𝑖 → (𝑦 < ((𝐹𝑘) + 𝑥) ↔ 𝑦 < ((𝐹𝑖) + 𝑥)))
7168, 70anbi12d 473 . . . . . . . 8 (𝑘 = 𝑖 → (((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
7271cbvralv 2729 . . . . . . 7 (∀𝑘 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)) ↔ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
7366, 72imbitrdi 161 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
7473reximdva 2599 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∃𝑚 ∈ ℕ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
75 fveq2 5558 . . . . . . . . . 10 (𝑗 = (𝑚 + 1) → (ℤ𝑗) = (ℤ‘(𝑚 + 1)))
7675raleqdv 2699 . . . . . . . . 9 (𝑗 = (𝑚 + 1) → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)) ↔ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
7776rspcev 2868 . . . . . . . 8 (((𝑚 + 1) ∈ ℕ ∧ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
7816, 77sylan 283 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
7978ex 115 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8079rexlimdva 2614 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8174, 80syld 45 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8281ralimdva 2564 . . 3 ((𝜑𝑦 ∈ ℝ) → (∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8382reximdva 2599 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8414, 83mpd 13 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  wss 3157   class class class wbr 4033  wf 5254  cfv 5258  (class class class)co 5922  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   < cltrr 7883   < clt 8061  cle 8062   / cdiv 8699  cn 8990  cz 9326  cuz 9601  +crp 9728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729
This theorem is referenced by:  cvg1nlemres  11150
  Copyright terms: Public domain W3C validator