ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgre GIF version

Theorem caucvgre 10241
Description: Convergence of real sequences.

A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term.

(Contributed by Jim Kingdon, 19-Jul-2021.)

Hypotheses
Ref Expression
caucvgre.f (𝜑𝐹:ℕ⟶ℝ)
caucvgre.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
Assertion
Ref Expression
caucvgre (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Distinct variable groups:   𝑖,𝐹,𝑗,𝑥,𝑦   𝑘,𝐹,𝑖,𝑥,𝑦   𝑛,𝐹,𝑘   𝜑,𝑘,𝑛   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑖,𝑗)

Proof of Theorem caucvgre
Dummy variables 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfnn2 8318 . . . 4 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
2 caucvgre.f . . . 4 (𝜑𝐹:ℕ⟶ℝ)
3 caucvgre.cau . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
42, 3caucvgrelemcau 10240 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
51, 2, 4ax-caucvg 7368 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
6 ralrp 9050 . . . . 5 (∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
7 0re 7391 . . . . . . . 8 0 ∈ ℝ
8 ltxrlt 7455 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 < 𝑥 ↔ 0 < 𝑥))
97, 8mpan 415 . . . . . . 7 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ 0 < 𝑥))
109imbi1d 229 . . . . . 6 (𝑥 ∈ ℝ → ((0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))) ↔ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))))
1110ralbiia 2386 . . . . 5 (∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))) ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
126, 11bitri 182 . . . 4 (∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
1312rexbii 2379 . . 3 (∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
145, 13sylibr 132 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
15 simpr 108 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
1615peano2nnd 8331 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
17 uznnssnn 8960 . . . . . . . . 9 ((𝑚 + 1) ∈ ℕ → (ℤ‘(𝑚 + 1)) ⊆ ℕ)
18 ssralv 3069 . . . . . . . . 9 ((ℤ‘(𝑚 + 1)) ⊆ ℕ → (∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑘 ∈ (ℤ‘(𝑚 + 1))(𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
1916, 17, 183syl 17 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑘 ∈ (ℤ‘(𝑚 + 1))(𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
20 eluznn 8982 . . . . . . . . . . . . . 14 (((𝑚 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ)
2116, 20sylan 277 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ)
22 simplr 497 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑚 ∈ ℕ)
2322peano2nnd 8331 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
2423nnzd 8763 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 + 1) ∈ ℤ)
25 eluz1 8918 . . . . . . . . . . . . . . . 16 ((𝑚 + 1) ∈ ℤ → (𝑘 ∈ (ℤ‘(𝑚 + 1)) ↔ (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘)))
2624, 25syl 14 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ (ℤ‘(𝑚 + 1)) ↔ (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘)))
2726biimpd 142 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ (ℤ‘(𝑚 + 1)) → (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘)))
2827impancom 256 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝑘 ∈ ℕ → (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘)))
2921, 28mpd 13 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘))
3029simprd 112 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝑚 + 1) ≤ 𝑘)
31 nnre 8323 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
3231ad2antlr 473 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑚 ∈ ℝ)
33 simpr 108 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
3433nnred 8329 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
35 1re 7390 . . . . . . . . . . . . . . 15 1 ∈ ℝ
36 ltadd1 7810 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑚 < 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
3735, 36mp3an3 1258 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑚 < 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
3832, 34, 37syl2anc 403 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 < 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
39 nnleltp1 8705 . . . . . . . . . . . . . 14 (((𝑚 + 1) ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑚 + 1) ≤ 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
4023, 33, 39syl2anc 403 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑚 + 1) ≤ 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
4138, 40bitr4d 189 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 < 𝑘 ↔ (𝑚 + 1) ≤ 𝑘))
4221, 41syldan 276 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝑚 < 𝑘 ↔ (𝑚 + 1) ≤ 𝑘))
4330, 42mpbird 165 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑚 < 𝑘)
44 nnre 8323 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
45 ltxrlt 7455 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑚 < 𝑘𝑚 < 𝑘))
4631, 44, 45syl2an 283 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑚 < 𝑘𝑚 < 𝑘))
4746adantll 460 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 < 𝑘𝑚 < 𝑘))
482ad4antr 478 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
4948, 33ffvelrnd 5380 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
50 simpllr 501 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ ℝ)
5150adantr 270 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑦 ∈ ℝ)
52 rpre 9035 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
5352ad3antlr 477 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5451, 53readdcld 7420 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑦 + 𝑥) ∈ ℝ)
55 ltxrlt 7455 . . . . . . . . . . . . . . 15 (((𝐹𝑘) ∈ ℝ ∧ (𝑦 + 𝑥) ∈ ℝ) → ((𝐹𝑘) < (𝑦 + 𝑥) ↔ (𝐹𝑘) < (𝑦 + 𝑥)))
5649, 54, 55syl2anc 403 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < (𝑦 + 𝑥) ↔ (𝐹𝑘) < (𝑦 + 𝑥)))
5749, 53readdcld 7420 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) + 𝑥) ∈ ℝ)
58 ltxrlt 7455 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ ((𝐹𝑘) + 𝑥) ∈ ℝ) → (𝑦 < ((𝐹𝑘) + 𝑥) ↔ 𝑦 < ((𝐹𝑘) + 𝑥)))
5951, 57, 58syl2anc 403 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑦 < ((𝐹𝑘) + 𝑥) ↔ 𝑦 < ((𝐹𝑘) + 𝑥)))
6056, 59anbi12d 457 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
6147, 60imbi12d 232 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
6261biimprd 156 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
6321, 62syldan 276 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → ((𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
6443, 63mpid 41 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → ((𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
6564ralimdva 2435 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ (ℤ‘(𝑚 + 1))(𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑘 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
6619, 65syld 44 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑘 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
67 fveq2 5253 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
6867breq1d 3821 . . . . . . . . 9 (𝑘 = 𝑖 → ((𝐹𝑘) < (𝑦 + 𝑥) ↔ (𝐹𝑖) < (𝑦 + 𝑥)))
6967oveq1d 5606 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝐹𝑘) + 𝑥) = ((𝐹𝑖) + 𝑥))
7069breq2d 3823 . . . . . . . . 9 (𝑘 = 𝑖 → (𝑦 < ((𝐹𝑘) + 𝑥) ↔ 𝑦 < ((𝐹𝑖) + 𝑥)))
7168, 70anbi12d 457 . . . . . . . 8 (𝑘 = 𝑖 → (((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
7271cbvralv 2583 . . . . . . 7 (∀𝑘 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)) ↔ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
7366, 72syl6ib 159 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
7473reximdva 2469 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∃𝑚 ∈ ℕ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
75 fveq2 5253 . . . . . . . . . 10 (𝑗 = (𝑚 + 1) → (ℤ𝑗) = (ℤ‘(𝑚 + 1)))
7675raleqdv 2561 . . . . . . . . 9 (𝑗 = (𝑚 + 1) → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)) ↔ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
7776rspcev 2712 . . . . . . . 8 (((𝑚 + 1) ∈ ℕ ∧ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
7816, 77sylan 277 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
7978ex 113 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8079rexlimdva 2483 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8174, 80syld 44 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8281ralimdva 2435 . . 3 ((𝜑𝑦 ∈ ℝ) → (∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8382reximdva 2469 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8414, 83mpd 13 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434  wral 2353  wrex 2354  wss 2984   class class class wbr 3811  wf 4965  cfv 4969  (class class class)co 5591  cr 7252  0cc0 7253  1c1 7254   + caddc 7256   < cltrr 7257   < clt 7425  cle 7426   / cdiv 8037  cn 8316  cz 8646  cuz 8914  +crp 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-mulrcl 7347  ax-addcom 7348  ax-mulcom 7349  ax-addass 7350  ax-mulass 7351  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-1rid 7355  ax-0id 7356  ax-rnegex 7357  ax-precex 7358  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-apti 7363  ax-pre-ltadd 7364  ax-pre-mulgt0 7365  ax-pre-mulext 7366  ax-caucvg 7368
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4084  df-po 4087  df-iso 4088  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-reap 7952  df-ap 7959  df-div 8038  df-inn 8317  df-n0 8566  df-z 8647  df-uz 8915  df-rp 9030
This theorem is referenced by:  cvg1nlemres  10245
  Copyright terms: Public domain W3C validator