ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgre GIF version

Theorem caucvgre 11487
Description: Convergence of real sequences.

A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within 1 / 𝑛 of the nth term.

(Contributed by Jim Kingdon, 19-Jul-2021.)

Hypotheses
Ref Expression
caucvgre.f (𝜑𝐹:ℕ⟶ℝ)
caucvgre.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
Assertion
Ref Expression
caucvgre (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Distinct variable groups:   𝑖,𝐹,𝑗,𝑥,𝑦   𝑘,𝐹,𝑖,𝑥,𝑦   𝑛,𝐹,𝑘   𝜑,𝑘,𝑛   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑖,𝑗)

Proof of Theorem caucvgre
Dummy variables 𝑚 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfnn2 9108 . . . 4 ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
2 caucvgre.f . . . 4 (𝜑𝐹:ℕ⟶ℝ)
3 caucvgre.cau . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (1 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (1 / 𝑛))))
42, 3caucvgrelemcau 11486 . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ ℕ (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
51, 2, 4ax-caucvg 8115 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
6 ralrp 9867 . . . . 5 (∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
7 0re 8142 . . . . . . . 8 0 ∈ ℝ
8 ltxrlt 8208 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (0 < 𝑥 ↔ 0 < 𝑥))
97, 8mpan 424 . . . . . . 7 (𝑥 ∈ ℝ → (0 < 𝑥 ↔ 0 < 𝑥))
109imbi1d 231 . . . . . 6 (𝑥 ∈ ℝ → ((0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))) ↔ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))))
1110ralbiia 2544 . . . . 5 (∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))) ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
126, 11bitri 184 . . . 4 (∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
1312rexbii 2537 . . 3 (∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
145, 13sylibr 134 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
15 simpr 110 . . . . . . . . . 10 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
1615peano2nnd 9121 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
17 uznnssnn 9768 . . . . . . . . 9 ((𝑚 + 1) ∈ ℕ → (ℤ‘(𝑚 + 1)) ⊆ ℕ)
18 ssralv 3288 . . . . . . . . 9 ((ℤ‘(𝑚 + 1)) ⊆ ℕ → (∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑘 ∈ (ℤ‘(𝑚 + 1))(𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
1916, 17, 183syl 17 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑘 ∈ (ℤ‘(𝑚 + 1))(𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
20 eluznn 9791 . . . . . . . . . . . . . 14 (((𝑚 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ)
2116, 20sylan 283 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ ℕ)
22 simplr 528 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑚 ∈ ℕ)
2322peano2nnd 9121 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 + 1) ∈ ℕ)
2423nnzd 9564 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 + 1) ∈ ℤ)
25 eluz1 9722 . . . . . . . . . . . . . . . 16 ((𝑚 + 1) ∈ ℤ → (𝑘 ∈ (ℤ‘(𝑚 + 1)) ↔ (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘)))
2624, 25syl 14 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ (ℤ‘(𝑚 + 1)) ↔ (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘)))
2726biimpd 144 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ (ℤ‘(𝑚 + 1)) → (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘)))
2827impancom 260 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝑘 ∈ ℕ → (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘)))
2921, 28mpd 13 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝑘 ∈ ℤ ∧ (𝑚 + 1) ≤ 𝑘))
3029simprd 114 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝑚 + 1) ≤ 𝑘)
31 nnre 9113 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
3231ad2antlr 489 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑚 ∈ ℝ)
33 simpr 110 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
3433nnred 9119 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
35 1re 8141 . . . . . . . . . . . . . . 15 1 ∈ ℝ
36 ltadd1 8572 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑚 < 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
3735, 36mp3an3 1360 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑚 < 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
3832, 34, 37syl2anc 411 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 < 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
39 nnleltp1 9502 . . . . . . . . . . . . . 14 (((𝑚 + 1) ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑚 + 1) ≤ 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
4023, 33, 39syl2anc 411 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑚 + 1) ≤ 𝑘 ↔ (𝑚 + 1) < (𝑘 + 1)))
4138, 40bitr4d 191 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 < 𝑘 ↔ (𝑚 + 1) ≤ 𝑘))
4221, 41syldan 282 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → (𝑚 < 𝑘 ↔ (𝑚 + 1) ≤ 𝑘))
4330, 42mpbird 167 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑚 < 𝑘)
44 nnre 9113 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
45 ltxrlt 8208 . . . . . . . . . . . . . . 15 ((𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑚 < 𝑘𝑚 < 𝑘))
4631, 44, 45syl2an 289 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑚 < 𝑘𝑚 < 𝑘))
4746adantll 476 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑚 < 𝑘𝑚 < 𝑘))
482ad4antr 494 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶ℝ)
4948, 33ffvelcdmd 5770 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
50 simpllr 534 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → 𝑦 ∈ ℝ)
5150adantr 276 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑦 ∈ ℝ)
52 rpre 9852 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
5352ad3antlr 493 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5451, 53readdcld 8172 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑦 + 𝑥) ∈ ℝ)
55 ltxrlt 8208 . . . . . . . . . . . . . . 15 (((𝐹𝑘) ∈ ℝ ∧ (𝑦 + 𝑥) ∈ ℝ) → ((𝐹𝑘) < (𝑦 + 𝑥) ↔ (𝐹𝑘) < (𝑦 + 𝑥)))
5649, 54, 55syl2anc 411 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) < (𝑦 + 𝑥) ↔ (𝐹𝑘) < (𝑦 + 𝑥)))
5749, 53readdcld 8172 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑘) + 𝑥) ∈ ℝ)
58 ltxrlt 8208 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ ((𝐹𝑘) + 𝑥) ∈ ℝ) → (𝑦 < ((𝐹𝑘) + 𝑥) ↔ 𝑦 < ((𝐹𝑘) + 𝑥)))
5951, 57, 58syl2anc 411 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝑦 < ((𝐹𝑘) + 𝑥) ↔ 𝑦 < ((𝐹𝑘) + 𝑥)))
6056, 59anbi12d 473 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
6147, 60imbi12d 234 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) ↔ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
6261biimprd 158 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
6321, 62syldan 282 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → ((𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
6443, 63mpid 42 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → ((𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
6564ralimdva 2597 . . . . . . . 8 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ (ℤ‘(𝑚 + 1))(𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑘 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
6619, 65syld 45 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑘 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))))
67 fveq2 5626 . . . . . . . . . 10 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
6867breq1d 4092 . . . . . . . . 9 (𝑘 = 𝑖 → ((𝐹𝑘) < (𝑦 + 𝑥) ↔ (𝐹𝑖) < (𝑦 + 𝑥)))
6967oveq1d 6015 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝐹𝑘) + 𝑥) = ((𝐹𝑖) + 𝑥))
7069breq2d 4094 . . . . . . . . 9 (𝑘 = 𝑖 → (𝑦 < ((𝐹𝑘) + 𝑥) ↔ 𝑦 < ((𝐹𝑖) + 𝑥)))
7168, 70anbi12d 473 . . . . . . . 8 (𝑘 = 𝑖 → (((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
7271cbvralv 2765 . . . . . . 7 (∀𝑘 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)) ↔ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
7366, 72imbitrdi 161 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
7473reximdva 2632 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∃𝑚 ∈ ℕ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
75 fveq2 5626 . . . . . . . . . 10 (𝑗 = (𝑚 + 1) → (ℤ𝑗) = (ℤ‘(𝑚 + 1)))
7675raleqdv 2734 . . . . . . . . 9 (𝑗 = (𝑚 + 1) → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)) ↔ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
7776rspcev 2907 . . . . . . . 8 (((𝑚 + 1) ∈ ℕ ∧ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
7816, 77sylan 283 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) ∧ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
7978ex 115 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) ∧ 𝑚 ∈ ℕ) → (∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8079rexlimdva 2648 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑖 ∈ (ℤ‘(𝑚 + 1))((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8174, 80syld 45 . . . 4 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥 ∈ ℝ+) → (∃𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8281ralimdva 2597 . . 3 ((𝜑𝑦 ∈ ℝ) → (∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8382reximdva 2632 . 2 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑚 ∈ ℕ ∀𝑘 ∈ ℕ (𝑚 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥))) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥))))
8414, 83mpd 13 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509  wss 3197   class class class wbr 4082  wf 5313  cfv 5317  (class class class)co 6000  cr 7994  0cc0 7995  1c1 7996   + caddc 7998   < cltrr 7999   < clt 8177  cle 8178   / cdiv 8815  cn 9106  cz 9442  cuz 9718  +crp 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846
This theorem is referenced by:  cvg1nlemres  11491
  Copyright terms: Public domain W3C validator