| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axcaucvg | GIF version | ||
| Description: Real number completeness
axiom. A Cauchy sequence with a modulus of
convergence converges. This is basically Corollary 11.2.13 of [HoTT],
p. (varies). The HoTT book theorem has a modulus of convergence
(that is, a rate of convergence) specified by (11.2.9) in HoTT whereas
this theorem fixes the rate of convergence to say that all terms after
the nth term must be within 1 / 𝑛 of the nth term (it should later
be able to prove versions of this theorem with a different fixed rate
or a modulus of convergence supplied as a hypothesis).
Because we are stating this axiom before we have introduced notations for ℕ or division, we use 𝑁 for the natural numbers and express a reciprocal in terms of ℩. This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 8045. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axcaucvg.n | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| axcaucvg.f | ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) |
| axcaucvg.cau | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) |
| Ref | Expression |
|---|---|
| axcaucvg | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axcaucvg.n | . 2 ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 2 | axcaucvg.f | . 2 ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) | |
| 3 | axcaucvg.cau | . 2 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) | |
| 4 | breq1 4047 | . . . . . . . . . . . . 13 ⊢ (𝑏 = 𝑙 → (𝑏 <Q [〈𝑗, 1o〉] ~Q ↔ 𝑙 <Q [〈𝑗, 1o〉] ~Q )) | |
| 5 | 4 | cbvabv 2330 | . . . . . . . . . . . 12 ⊢ {𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q } = {𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q } |
| 6 | breq2 4048 | . . . . . . . . . . . . 13 ⊢ (𝑐 = 𝑢 → ([〈𝑗, 1o〉] ~Q <Q 𝑐 ↔ [〈𝑗, 1o〉] ~Q <Q 𝑢)) | |
| 7 | 6 | cbvabv 2330 | . . . . . . . . . . . 12 ⊢ {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐} = {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢} |
| 8 | 5, 7 | opeq12i 3824 | . . . . . . . . . . 11 ⊢ 〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 = 〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 |
| 9 | 8 | oveq1i 5954 | . . . . . . . . . 10 ⊢ (〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P) = (〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P) |
| 10 | 9 | opeq1i 3822 | . . . . . . . . 9 ⊢ 〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉 = 〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉 |
| 11 | eceq1 6655 | . . . . . . . . 9 ⊢ (〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉 = 〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉 → [〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R = [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R ) | |
| 12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ [〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R = [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R |
| 13 | 12 | opeq1i 3822 | . . . . . . 7 ⊢ 〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉 = 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 |
| 14 | 13 | fveq2i 5579 | . . . . . 6 ⊢ (𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) |
| 15 | 14 | a1i 9 | . . . . 5 ⊢ (𝑎 = 𝑧 → (𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉)) |
| 16 | opeq1 3819 | . . . . 5 ⊢ (𝑎 = 𝑧 → 〈𝑎, 0R〉 = 〈𝑧, 0R〉) | |
| 17 | 15, 16 | eqeq12d 2220 | . . . 4 ⊢ (𝑎 = 𝑧 → ((𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑎, 0R〉 ↔ (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) |
| 18 | 17 | cbvriotav 5911 | . . 3 ⊢ (℩𝑎 ∈ R (𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑎, 0R〉) = (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉) |
| 19 | 18 | mpteq2i 4131 | . 2 ⊢ (𝑗 ∈ N ↦ (℩𝑎 ∈ R (𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑎, 0R〉)) = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) |
| 20 | 1, 2, 3, 19 | axcaucvglemres 8012 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 {cab 2191 ∀wral 2484 ∃wrex 2485 〈cop 3636 ∩ cint 3885 class class class wbr 4044 ↦ cmpt 4105 ⟶wf 5267 ‘cfv 5271 ℩crio 5898 (class class class)co 5944 1oc1o 6495 [cec 6618 Ncnpi 7385 ~Q ceq 7392 <Q cltq 7398 1Pc1p 7405 +P cpp 7406 ~R cer 7409 Rcnr 7410 0Rc0r 7411 ℝcr 7924 0cc0 7925 1c1 7926 + caddc 7928 <ℝ cltrr 7929 · cmul 7930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-2o 6503 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-pli 7418 df-mi 7419 df-lti 7420 df-plpq 7457 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-plqqs 7462 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-enq0 7537 df-nq0 7538 df-0nq0 7539 df-plq0 7540 df-mq0 7541 df-inp 7579 df-i1p 7580 df-iplp 7581 df-imp 7582 df-iltp 7583 df-enr 7839 df-nr 7840 df-plr 7841 df-mr 7842 df-ltr 7843 df-0r 7844 df-1r 7845 df-m1r 7846 df-c 7931 df-0 7932 df-1 7933 df-r 7935 df-add 7936 df-mul 7937 df-lt 7938 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |