![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axcaucvg | GIF version |
Description: Real number completeness
axiom. A Cauchy sequence with a modulus of
convergence converges. This is basically Corollary 11.2.13 of [HoTT],
p. (varies). The HoTT book theorem has a modulus of convergence
(that is, a rate of convergence) specified by (11.2.9) in HoTT whereas
this theorem fixes the rate of convergence to say that all terms after
the nth term must be within 1 / 𝑛 of the nth term (it should later
be able to prove versions of this theorem with a different fixed rate
or a modulus of convergence supplied as a hypothesis).
Because we are stating this axiom before we have introduced notations for ℕ or division, we use 𝑁 for the natural numbers and express a reciprocal in terms of ℩. This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 7992. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axcaucvg.n | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
axcaucvg.f | ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) |
axcaucvg.cau | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) |
Ref | Expression |
---|---|
axcaucvg | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axcaucvg.n | . 2 ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
2 | axcaucvg.f | . 2 ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) | |
3 | axcaucvg.cau | . 2 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) | |
4 | breq1 4032 | . . . . . . . . . . . . 13 ⊢ (𝑏 = 𝑙 → (𝑏 <Q [〈𝑗, 1o〉] ~Q ↔ 𝑙 <Q [〈𝑗, 1o〉] ~Q )) | |
5 | 4 | cbvabv 2318 | . . . . . . . . . . . 12 ⊢ {𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q } = {𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q } |
6 | breq2 4033 | . . . . . . . . . . . . 13 ⊢ (𝑐 = 𝑢 → ([〈𝑗, 1o〉] ~Q <Q 𝑐 ↔ [〈𝑗, 1o〉] ~Q <Q 𝑢)) | |
7 | 6 | cbvabv 2318 | . . . . . . . . . . . 12 ⊢ {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐} = {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢} |
8 | 5, 7 | opeq12i 3809 | . . . . . . . . . . 11 ⊢ 〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 = 〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 |
9 | 8 | oveq1i 5928 | . . . . . . . . . 10 ⊢ (〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P) = (〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P) |
10 | 9 | opeq1i 3807 | . . . . . . . . 9 ⊢ 〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉 = 〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉 |
11 | eceq1 6622 | . . . . . . . . 9 ⊢ (〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉 = 〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉 → [〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R = [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R ) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ [〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R = [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R |
13 | 12 | opeq1i 3807 | . . . . . . 7 ⊢ 〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉 = 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 |
14 | 13 | fveq2i 5557 | . . . . . 6 ⊢ (𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) |
15 | 14 | a1i 9 | . . . . 5 ⊢ (𝑎 = 𝑧 → (𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉)) |
16 | opeq1 3804 | . . . . 5 ⊢ (𝑎 = 𝑧 → 〈𝑎, 0R〉 = 〈𝑧, 0R〉) | |
17 | 15, 16 | eqeq12d 2208 | . . . 4 ⊢ (𝑎 = 𝑧 → ((𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑎, 0R〉 ↔ (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) |
18 | 17 | cbvriotav 5885 | . . 3 ⊢ (℩𝑎 ∈ R (𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑎, 0R〉) = (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉) |
19 | 18 | mpteq2i 4116 | . 2 ⊢ (𝑗 ∈ N ↦ (℩𝑎 ∈ R (𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑎, 0R〉)) = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) |
20 | 1, 2, 3, 19 | axcaucvglemres 7959 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 {cab 2179 ∀wral 2472 ∃wrex 2473 〈cop 3621 ∩ cint 3870 class class class wbr 4029 ↦ cmpt 4090 ⟶wf 5250 ‘cfv 5254 ℩crio 5872 (class class class)co 5918 1oc1o 6462 [cec 6585 Ncnpi 7332 ~Q ceq 7339 <Q cltq 7345 1Pc1p 7352 +P cpp 7353 ~R cer 7356 Rcnr 7357 0Rc0r 7358 ℝcr 7871 0cc0 7872 1c1 7873 + caddc 7875 <ℝ cltrr 7876 · cmul 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-2o 6470 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-pli 7365 df-mi 7366 df-lti 7367 df-plpq 7404 df-mpq 7405 df-enq 7407 df-nqqs 7408 df-plqqs 7409 df-mqqs 7410 df-1nqqs 7411 df-rq 7412 df-ltnqqs 7413 df-enq0 7484 df-nq0 7485 df-0nq0 7486 df-plq0 7487 df-mq0 7488 df-inp 7526 df-i1p 7527 df-iplp 7528 df-imp 7529 df-iltp 7530 df-enr 7786 df-nr 7787 df-plr 7788 df-mr 7789 df-ltr 7790 df-0r 7791 df-1r 7792 df-m1r 7793 df-c 7878 df-0 7879 df-1 7880 df-r 7882 df-add 7883 df-mul 7884 df-lt 7885 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |