ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvg GIF version

Theorem axcaucvg 7862
Description: Real number completeness axiom. A Cauchy sequence with a modulus of convergence converges. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

Because we are stating this axiom before we have introduced notations for or division, we use 𝑁 for the natural numbers and express a reciprocal in terms of .

This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 7894. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.)

Hypotheses
Ref Expression
axcaucvg.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
axcaucvg.f (𝜑𝐹:𝑁⟶ℝ)
axcaucvg.cau (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
Assertion
Ref Expression
axcaucvg (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑛   𝑥,𝐹,𝑦,𝑗,𝑘   𝑗,𝑁,𝑘,𝑛   𝑥,𝑁,𝑦   𝜑,𝑗,𝑘,𝑛   𝑘,𝑟,𝑛   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑟)   𝐹(𝑟)   𝑁(𝑟)

Proof of Theorem axcaucvg
Dummy variables 𝑎 𝑙 𝑢 𝑧 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axcaucvg.n . 2 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
2 axcaucvg.f . 2 (𝜑𝐹:𝑁⟶ℝ)
3 axcaucvg.cau . 2 (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
4 breq1 3992 . . . . . . . . . . . . 13 (𝑏 = 𝑙 → (𝑏 <Q [⟨𝑗, 1o⟩] ~Q𝑙 <Q [⟨𝑗, 1o⟩] ~Q ))
54cbvabv 2295 . . . . . . . . . . . 12 {𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }
6 breq2 3993 . . . . . . . . . . . . 13 (𝑐 = 𝑢 → ([⟨𝑗, 1o⟩] ~Q <Q 𝑐 ↔ [⟨𝑗, 1o⟩] ~Q <Q 𝑢))
76cbvabv 2295 . . . . . . . . . . . 12 {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐} = {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}
85, 7opeq12i 3770 . . . . . . . . . . 11 ⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩
98oveq1i 5863 . . . . . . . . . 10 (⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)
109opeq1i 3768 . . . . . . . . 9 ⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P
11 eceq1 6548 . . . . . . . . 9 (⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ → [⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1210, 11ax-mp 5 . . . . . . . 8 [⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R
1312opeq1i 3768 . . . . . . 7 ⟨[⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R
1413fveq2i 5499 . . . . . 6 (𝐹‘⟨[⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
1514a1i 9 . . . . 5 (𝑎 = 𝑧 → (𝐹‘⟨[⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
16 opeq1 3765 . . . . 5 (𝑎 = 𝑧 → ⟨𝑎, 0R⟩ = ⟨𝑧, 0R⟩)
1715, 16eqeq12d 2185 . . . 4 (𝑎 = 𝑧 → ((𝐹‘⟨[⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑎, 0R⟩ ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
1817cbvriotav 5820 . . 3 (𝑎R (𝐹‘⟨[⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑎, 0R⟩) = (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩)
1918mpteq2i 4076 . 2 (𝑗N ↦ (𝑎R (𝐹‘⟨[⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑎, 0R⟩)) = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
201, 2, 3, 19axcaucvglemres 7861 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  {cab 2156  wral 2448  wrex 2449  cop 3586   cint 3831   class class class wbr 3989  cmpt 4050  wf 5194  cfv 5198  crio 5808  (class class class)co 5853  1oc1o 6388  [cec 6511  Ncnpi 7234   ~Q ceq 7241   <Q cltq 7247  1Pc1p 7254   +P cpp 7255   ~R cer 7258  Rcnr 7259  0Rc0r 7260  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   < cltrr 7778   · cmul 7779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-imp 7431  df-iltp 7432  df-enr 7688  df-nr 7689  df-plr 7690  df-mr 7691  df-ltr 7692  df-0r 7693  df-1r 7694  df-m1r 7695  df-c 7780  df-0 7781  df-1 7782  df-r 7784  df-add 7785  df-mul 7786  df-lt 7787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator