ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvg GIF version

Theorem axcaucvg 7899
Description: Real number completeness axiom. A Cauchy sequence with a modulus of convergence converges. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

Because we are stating this axiom before we have introduced notations for β„• or division, we use 𝑁 for the natural numbers and express a reciprocal in terms of β„©.

This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 7931. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.)

Hypotheses
Ref Expression
axcaucvg.n 𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}
axcaucvg.f (πœ‘ β†’ 𝐹:π‘βŸΆβ„)
axcaucvg.cau (πœ‘ β†’ βˆ€π‘› ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑛 <ℝ π‘˜ β†’ ((πΉβ€˜π‘›) <ℝ ((πΉβ€˜π‘˜) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)) ∧ (πΉβ€˜π‘˜) <ℝ ((πΉβ€˜π‘›) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)))))
Assertion
Ref Expression
axcaucvg (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘₯ ∈ ℝ (0 <ℝ π‘₯ β†’ βˆƒπ‘— ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑗 <ℝ π‘˜ β†’ ((πΉβ€˜π‘˜) <ℝ (𝑦 + π‘₯) ∧ 𝑦 <ℝ ((πΉβ€˜π‘˜) + π‘₯)))))
Distinct variable groups:   𝑗,𝐹,π‘˜,𝑛   π‘₯,𝐹,𝑦,𝑗,π‘˜   𝑗,𝑁,π‘˜,𝑛   π‘₯,𝑁,𝑦   πœ‘,𝑗,π‘˜,𝑛   π‘˜,π‘Ÿ,𝑛   πœ‘,π‘₯
Allowed substitution hints:   πœ‘(𝑦,π‘Ÿ)   𝐹(π‘Ÿ)   𝑁(π‘Ÿ)

Proof of Theorem axcaucvg
Dummy variables π‘Ž 𝑙 𝑒 𝑧 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axcaucvg.n . 2 𝑁 = ∩ {π‘₯ ∣ (1 ∈ π‘₯ ∧ βˆ€π‘¦ ∈ π‘₯ (𝑦 + 1) ∈ π‘₯)}
2 axcaucvg.f . 2 (πœ‘ β†’ 𝐹:π‘βŸΆβ„)
3 axcaucvg.cau . 2 (πœ‘ β†’ βˆ€π‘› ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑛 <ℝ π‘˜ β†’ ((πΉβ€˜π‘›) <ℝ ((πΉβ€˜π‘˜) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)) ∧ (πΉβ€˜π‘˜) <ℝ ((πΉβ€˜π‘›) + (β„©π‘Ÿ ∈ ℝ (𝑛 Β· π‘Ÿ) = 1)))))
4 breq1 4007 . . . . . . . . . . . . 13 (𝑏 = 𝑙 β†’ (𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q ↔ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q ))
54cbvabv 2302 . . . . . . . . . . . 12 {𝑏 ∣ 𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q } = {𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }
6 breq2 4008 . . . . . . . . . . . . 13 (𝑐 = 𝑒 β†’ ([βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐 ↔ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒))
76cbvabv 2302 . . . . . . . . . . . 12 {𝑐 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐} = {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}
85, 7opeq12i 3784 . . . . . . . . . . 11 ⟨{𝑏 ∣ 𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑐 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐}⟩ = ⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩
98oveq1i 5885 . . . . . . . . . 10 (⟨{𝑏 ∣ 𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑐 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P) = (⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P)
109opeq1i 3782 . . . . . . . . 9 ⟨(⟨{𝑏 ∣ 𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑐 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩
11 eceq1 6570 . . . . . . . . 9 (⟨(⟨{𝑏 ∣ 𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑐 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩ β†’ [⟨(⟨{𝑏 ∣ 𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑐 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R )
1210, 11ax-mp 5 . . . . . . . 8 [⟨(⟨{𝑏 ∣ 𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑐 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R
1312opeq1i 3782 . . . . . . 7 ⟨[⟨(⟨{𝑏 ∣ 𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑐 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩
1413fveq2i 5519 . . . . . 6 (πΉβ€˜βŸ¨[⟨(⟨{𝑏 ∣ 𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑐 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = (πΉβ€˜βŸ¨[⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
1514a1i 9 . . . . 5 (π‘Ž = 𝑧 β†’ (πΉβ€˜βŸ¨[⟨(⟨{𝑏 ∣ 𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑐 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = (πΉβ€˜βŸ¨[⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
16 opeq1 3779 . . . . 5 (π‘Ž = 𝑧 β†’ βŸ¨π‘Ž, 0R⟩ = βŸ¨π‘§, 0R⟩)
1715, 16eqeq12d 2192 . . . 4 (π‘Ž = 𝑧 β†’ ((πΉβ€˜βŸ¨[⟨(⟨{𝑏 ∣ 𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑐 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = βŸ¨π‘Ž, 0R⟩ ↔ (πΉβ€˜βŸ¨[⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = βŸ¨π‘§, 0R⟩))
1817cbvriotav 5842 . . 3 (β„©π‘Ž ∈ R (πΉβ€˜βŸ¨[⟨(⟨{𝑏 ∣ 𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑐 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = βŸ¨π‘Ž, 0R⟩) = (℩𝑧 ∈ R (πΉβ€˜βŸ¨[⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = βŸ¨π‘§, 0R⟩)
1918mpteq2i 4091 . 2 (𝑗 ∈ N ↦ (β„©π‘Ž ∈ R (πΉβ€˜βŸ¨[⟨(⟨{𝑏 ∣ 𝑏 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑐 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = βŸ¨π‘Ž, 0R⟩)) = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (πΉβ€˜βŸ¨[⟨(⟨{𝑙 ∣ 𝑙 <Q [βŸ¨π‘—, 1o⟩] ~Q }, {𝑒 ∣ [βŸ¨π‘—, 1o⟩] ~Q <Q 𝑒}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = βŸ¨π‘§, 0R⟩))
201, 2, 3, 19axcaucvglemres 7898 1 (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘₯ ∈ ℝ (0 <ℝ π‘₯ β†’ βˆƒπ‘— ∈ 𝑁 βˆ€π‘˜ ∈ 𝑁 (𝑗 <ℝ π‘˜ β†’ ((πΉβ€˜π‘˜) <ℝ (𝑦 + π‘₯) ∧ 𝑦 <ℝ ((πΉβ€˜π‘˜) + π‘₯)))))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  {cab 2163  βˆ€wral 2455  βˆƒwrex 2456  βŸ¨cop 3596  βˆ© cint 3845   class class class wbr 4004   ↦ cmpt 4065  βŸΆwf 5213  β€˜cfv 5217  β„©crio 5830  (class class class)co 5875  1oc1o 6410  [cec 6533  Ncnpi 7271   ~Q ceq 7278   <Q cltq 7284  1Pc1p 7291   +P cpp 7292   ~R cer 7295  Rcnr 7296  0Rc0r 7297  β„cr 7810  0cc0 7811  1c1 7812   + caddc 7814   <ℝ cltrr 7815   Β· cmul 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-2o 6418  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-pli 7304  df-mi 7305  df-lti 7306  df-plpq 7343  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-plqqs 7348  df-mqqs 7349  df-1nqqs 7350  df-rq 7351  df-ltnqqs 7352  df-enq0 7423  df-nq0 7424  df-0nq0 7425  df-plq0 7426  df-mq0 7427  df-inp 7465  df-i1p 7466  df-iplp 7467  df-imp 7468  df-iltp 7469  df-enr 7725  df-nr 7726  df-plr 7727  df-mr 7728  df-ltr 7729  df-0r 7730  df-1r 7731  df-m1r 7732  df-c 7817  df-0 7818  df-1 7819  df-r 7821  df-add 7822  df-mul 7823  df-lt 7824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator