ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvg GIF version

Theorem axcaucvg 7841
Description: Real number completeness axiom. A Cauchy sequence with a modulus of convergence converges. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within 1 / 𝑛 of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

Because we are stating this axiom before we have introduced notations for or division, we use 𝑁 for the natural numbers and express a reciprocal in terms of .

This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 7873. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.)

Hypotheses
Ref Expression
axcaucvg.n 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
axcaucvg.f (𝜑𝐹:𝑁⟶ℝ)
axcaucvg.cau (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
Assertion
Ref Expression
axcaucvg (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑛   𝑥,𝐹,𝑦,𝑗,𝑘   𝑗,𝑁,𝑘,𝑛   𝑥,𝑁,𝑦   𝜑,𝑗,𝑘,𝑛   𝑘,𝑟,𝑛   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑟)   𝐹(𝑟)   𝑁(𝑟)

Proof of Theorem axcaucvg
Dummy variables 𝑎 𝑙 𝑢 𝑧 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axcaucvg.n . 2 𝑁 = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
2 axcaucvg.f . 2 (𝜑𝐹:𝑁⟶ℝ)
3 axcaucvg.cau . 2 (𝜑 → ∀𝑛𝑁𝑘𝑁 (𝑛 < 𝑘 → ((𝐹𝑛) < ((𝐹𝑘) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)))))
4 breq1 3985 . . . . . . . . . . . . 13 (𝑏 = 𝑙 → (𝑏 <Q [⟨𝑗, 1o⟩] ~Q𝑙 <Q [⟨𝑗, 1o⟩] ~Q ))
54cbvabv 2291 . . . . . . . . . . . 12 {𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q } = {𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }
6 breq2 3986 . . . . . . . . . . . . 13 (𝑐 = 𝑢 → ([⟨𝑗, 1o⟩] ~Q <Q 𝑐 ↔ [⟨𝑗, 1o⟩] ~Q <Q 𝑢))
76cbvabv 2291 . . . . . . . . . . . 12 {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐} = {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}
85, 7opeq12i 3763 . . . . . . . . . . 11 ⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ = ⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩
98oveq1i 5852 . . . . . . . . . 10 (⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P) = (⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P)
109opeq1i 3761 . . . . . . . . 9 ⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P
11 eceq1 6536 . . . . . . . . 9 (⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩ = ⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩ → [⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )
1210, 11ax-mp 5 . . . . . . . 8 [⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R = [⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R
1312opeq1i 3761 . . . . . . 7 ⟨[⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩ = ⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R
1413fveq2i 5489 . . . . . 6 (𝐹‘⟨[⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩)
1514a1i 9 . . . . 5 (𝑎 = 𝑧 → (𝐹‘⟨[⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩))
16 opeq1 3758 . . . . 5 (𝑎 = 𝑧 → ⟨𝑎, 0R⟩ = ⟨𝑧, 0R⟩)
1715, 16eqeq12d 2180 . . . 4 (𝑎 = 𝑧 → ((𝐹‘⟨[⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑎, 0R⟩ ↔ (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
1817cbvriotav 5809 . . 3 (𝑎R (𝐹‘⟨[⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑎, 0R⟩) = (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩)
1918mpteq2i 4069 . 2 (𝑗N ↦ (𝑎R (𝐹‘⟨[⟨(⟨{𝑏𝑏 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑐 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑐}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑎, 0R⟩)) = (𝑗N ↦ (𝑧R (𝐹‘⟨[⟨(⟨{𝑙𝑙 <Q [⟨𝑗, 1o⟩] ~Q }, {𝑢 ∣ [⟨𝑗, 1o⟩] ~Q <Q 𝑢}⟩ +P 1P), 1P⟩] ~R , 0R⟩) = ⟨𝑧, 0R⟩))
201, 2, 3, 19axcaucvglemres 7840 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 < 𝑥 → ∃𝑗𝑁𝑘𝑁 (𝑗 < 𝑘 → ((𝐹𝑘) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑘) + 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  {cab 2151  wral 2444  wrex 2445  cop 3579   cint 3824   class class class wbr 3982  cmpt 4043  wf 5184  cfv 5188  crio 5797  (class class class)co 5842  1oc1o 6377  [cec 6499  Ncnpi 7213   ~Q ceq 7220   <Q cltq 7226  1Pc1p 7233   +P cpp 7234   ~R cer 7237  Rcnr 7238  0Rc0r 7239  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   < cltrr 7757   · cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-iltp 7411  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-ltr 7671  df-0r 7672  df-1r 7673  df-m1r 7674  df-c 7759  df-0 7760  df-1 7761  df-r 7763  df-add 7764  df-mul 7765  df-lt 7766
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator