Step | Hyp | Ref
| Expression |
1 | | axcaucvg.n |
. 2
β’ π = β©
{π₯ β£ (1 β π₯ β§ βπ¦ β π₯ (π¦ + 1) β π₯)} |
2 | | axcaucvg.f |
. 2
β’ (π β πΉ:πβΆβ) |
3 | | axcaucvg.cau |
. 2
β’ (π β βπ β π βπ β π (π <β π β ((πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1)) β§ (πΉβπ) <β ((πΉβπ) + (β©π β β (π Β· π) = 1))))) |
4 | | breq1 4007 |
. . . . . . . . . . . . 13
β’ (π = π β (π <Q [β¨π, 1oβ©]
~Q β π <Q [β¨π, 1oβ©]
~Q )) |
5 | 4 | cbvabv 2302 |
. . . . . . . . . . . 12
β’ {π β£ π <Q [β¨π, 1oβ©]
~Q } = {π β£ π <Q [β¨π, 1oβ©]
~Q } |
6 | | breq2 4008 |
. . . . . . . . . . . . 13
β’ (π = π’ β ([β¨π, 1oβ©]
~Q <Q π β [β¨π, 1oβ©]
~Q <Q π’)) |
7 | 6 | cbvabv 2302 |
. . . . . . . . . . . 12
β’ {π β£ [β¨π, 1oβ©]
~Q <Q π} = {π’ β£ [β¨π, 1oβ©]
~Q <Q π’} |
8 | 5, 7 | opeq12i 3784 |
. . . . . . . . . . 11
β’
β¨{π β£
π
<Q [β¨π, 1oβ©]
~Q }, {π β£ [β¨π, 1oβ©]
~Q <Q π}β© = β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© |
9 | 8 | oveq1i 5885 |
. . . . . . . . . 10
β’
(β¨{π β£
π
<Q [β¨π, 1oβ©]
~Q }, {π β£ [β¨π, 1oβ©]
~Q <Q π}β© +P
1P) = (β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P) |
10 | 9 | opeq1i 3782 |
. . . . . . . . 9
β’
β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π β£ [β¨π, 1oβ©]
~Q <Q π}β© +P
1P), 1Pβ© =
β¨(β¨{π β£
π
<Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P),
1Pβ© |
11 | | eceq1 6570 |
. . . . . . . . 9
β’
(β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π β£ [β¨π, 1oβ©]
~Q <Q π}β© +P
1P), 1Pβ© =
β¨(β¨{π β£
π
<Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ© β
[β¨(β¨{π β£
π
<Q [β¨π, 1oβ©]
~Q }, {π β£ [β¨π, 1oβ©]
~Q <Q π}β© +P
1P), 1Pβ©]
~R = [β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R ) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . 8
β’
[β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π β£ [β¨π, 1oβ©]
~Q <Q π}β© +P
1P), 1Pβ©]
~R = [β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R |
13 | 12 | opeq1i 3782 |
. . . . . . 7
β’
β¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π β£ [β¨π, 1oβ©]
~Q <Q π}β© +P
1P), 1Pβ©]
~R , 0Rβ© =
β¨[β¨(β¨{π
β£ π
<Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R ,
0Rβ© |
14 | 13 | fveq2i 5519 |
. . . . . 6
β’ (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π β£ [β¨π, 1oβ©]
~Q <Q π}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R ,
0Rβ©) |
15 | 14 | a1i 9 |
. . . . 5
β’ (π = π§ β (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π β£ [β¨π, 1oβ©]
~Q <Q π}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R ,
0Rβ©)) |
16 | | opeq1 3779 |
. . . . 5
β’ (π = π§ β β¨π, 0Rβ© =
β¨π§,
0Rβ©) |
17 | 15, 16 | eqeq12d 2192 |
. . . 4
β’ (π = π§ β ((πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π β£ [β¨π, 1oβ©]
~Q <Q π}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = β¨π,
0Rβ© β (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = β¨π§,
0Rβ©)) |
18 | 17 | cbvriotav 5842 |
. . 3
β’
(β©π
β R (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π β£ [β¨π, 1oβ©]
~Q <Q π}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = β¨π,
0Rβ©) = (β©π§ β R (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = β¨π§,
0Rβ©) |
19 | 18 | mpteq2i 4091 |
. 2
β’ (π β N β¦
(β©π β
R (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π β£ [β¨π, 1oβ©]
~Q <Q π}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = β¨π,
0Rβ©)) = (π β N β¦
(β©π§ β
R (πΉββ¨[β¨(β¨{π β£ π <Q [β¨π, 1oβ©]
~Q }, {π’ β£ [β¨π, 1oβ©]
~Q <Q π’}β© +P
1P), 1Pβ©]
~R , 0Rβ©) = β¨π§,
0Rβ©)) |
20 | 1, 2, 3, 19 | axcaucvglemres 7898 |
1
β’ (π β βπ¦ β β βπ₯ β β (0 <β
π₯ β βπ β π βπ β π (π <β π β ((πΉβπ) <β (π¦ + π₯) β§ π¦ <β ((πΉβπ) + π₯))))) |