![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > axcaucvg | GIF version |
Description: Real number completeness
axiom. A Cauchy sequence with a modulus of
convergence converges. This is basically Corollary 11.2.13 of [HoTT],
p. (varies). The HoTT book theorem has a modulus of convergence
(that is, a rate of convergence) specified by (11.2.9) in HoTT whereas
this theorem fixes the rate of convergence to say that all terms after
the nth term must be within 1 / 𝑛 of the nth term (it should later
be able to prove versions of this theorem with a different fixed rate
or a modulus of convergence supplied as a hypothesis).
Because we are stating this axiom before we have introduced notations for ℕ or division, we use 𝑁 for the natural numbers and express a reciprocal in terms of ℩. This construction-dependent theorem should not be referenced directly; instead, use ax-caucvg 7922. (Contributed by Jim Kingdon, 8-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axcaucvg.n | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
axcaucvg.f | ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) |
axcaucvg.cau | ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) |
Ref | Expression |
---|---|
axcaucvg | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axcaucvg.n | . 2 ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
2 | axcaucvg.f | . 2 ⊢ (𝜑 → 𝐹:𝑁⟶ℝ) | |
3 | axcaucvg.cau | . 2 ⊢ (𝜑 → ∀𝑛 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑛 <ℝ 𝑘 → ((𝐹‘𝑛) <ℝ ((𝐹‘𝑘) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1)) ∧ (𝐹‘𝑘) <ℝ ((𝐹‘𝑛) + (℩𝑟 ∈ ℝ (𝑛 · 𝑟) = 1))))) | |
4 | breq1 4003 | . . . . . . . . . . . . 13 ⊢ (𝑏 = 𝑙 → (𝑏 <Q [〈𝑗, 1o〉] ~Q ↔ 𝑙 <Q [〈𝑗, 1o〉] ~Q )) | |
5 | 4 | cbvabv 2302 | . . . . . . . . . . . 12 ⊢ {𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q } = {𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q } |
6 | breq2 4004 | . . . . . . . . . . . . 13 ⊢ (𝑐 = 𝑢 → ([〈𝑗, 1o〉] ~Q <Q 𝑐 ↔ [〈𝑗, 1o〉] ~Q <Q 𝑢)) | |
7 | 6 | cbvabv 2302 | . . . . . . . . . . . 12 ⊢ {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐} = {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢} |
8 | 5, 7 | opeq12i 3781 | . . . . . . . . . . 11 ⊢ 〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 = 〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 |
9 | 8 | oveq1i 5879 | . . . . . . . . . 10 ⊢ (〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P) = (〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P) |
10 | 9 | opeq1i 3779 | . . . . . . . . 9 ⊢ 〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉 = 〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉 |
11 | eceq1 6564 | . . . . . . . . 9 ⊢ (〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉 = 〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉 → [〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R = [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R ) | |
12 | 10, 11 | ax-mp 5 | . . . . . . . 8 ⊢ [〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R = [〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R |
13 | 12 | opeq1i 3779 | . . . . . . 7 ⊢ 〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉 = 〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉 |
14 | 13 | fveq2i 5514 | . . . . . 6 ⊢ (𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) |
15 | 14 | a1i 9 | . . . . 5 ⊢ (𝑎 = 𝑧 → (𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉)) |
16 | opeq1 3776 | . . . . 5 ⊢ (𝑎 = 𝑧 → 〈𝑎, 0R〉 = 〈𝑧, 0R〉) | |
17 | 15, 16 | eqeq12d 2192 | . . . 4 ⊢ (𝑎 = 𝑧 → ((𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑎, 0R〉 ↔ (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) |
18 | 17 | cbvriotav 5836 | . . 3 ⊢ (℩𝑎 ∈ R (𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑎, 0R〉) = (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉) |
19 | 18 | mpteq2i 4087 | . 2 ⊢ (𝑗 ∈ N ↦ (℩𝑎 ∈ R (𝐹‘〈[〈(〈{𝑏 ∣ 𝑏 <Q [〈𝑗, 1o〉] ~Q }, {𝑐 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑐}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑎, 0R〉)) = (𝑗 ∈ N ↦ (℩𝑧 ∈ R (𝐹‘〈[〈(〈{𝑙 ∣ 𝑙 <Q [〈𝑗, 1o〉] ~Q }, {𝑢 ∣ [〈𝑗, 1o〉] ~Q <Q 𝑢}〉 +P 1P), 1P〉] ~R , 0R〉) = 〈𝑧, 0R〉)) |
20 | 1, 2, 3, 19 | axcaucvglemres 7889 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (0 <ℝ 𝑥 → ∃𝑗 ∈ 𝑁 ∀𝑘 ∈ 𝑁 (𝑗 <ℝ 𝑘 → ((𝐹‘𝑘) <ℝ (𝑦 + 𝑥) ∧ 𝑦 <ℝ ((𝐹‘𝑘) + 𝑥))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 {cab 2163 ∀wral 2455 ∃wrex 2456 〈cop 3594 ∩ cint 3842 class class class wbr 4000 ↦ cmpt 4061 ⟶wf 5208 ‘cfv 5212 ℩crio 5824 (class class class)co 5869 1oc1o 6404 [cec 6527 Ncnpi 7262 ~Q ceq 7269 <Q cltq 7275 1Pc1p 7282 +P cpp 7283 ~R cer 7286 Rcnr 7287 0Rc0r 7288 ℝcr 7801 0cc0 7802 1c1 7803 + caddc 7805 <ℝ cltrr 7806 · cmul 7807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-eprel 4286 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-riota 5825 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-irdg 6365 df-1o 6411 df-2o 6412 df-oadd 6415 df-omul 6416 df-er 6529 df-ec 6531 df-qs 6535 df-ni 7294 df-pli 7295 df-mi 7296 df-lti 7297 df-plpq 7334 df-mpq 7335 df-enq 7337 df-nqqs 7338 df-plqqs 7339 df-mqqs 7340 df-1nqqs 7341 df-rq 7342 df-ltnqqs 7343 df-enq0 7414 df-nq0 7415 df-0nq0 7416 df-plq0 7417 df-mq0 7418 df-inp 7456 df-i1p 7457 df-iplp 7458 df-imp 7459 df-iltp 7460 df-enr 7716 df-nr 7717 df-plr 7718 df-mr 7719 df-ltr 7720 df-0r 7721 df-1r 7722 df-m1r 7723 df-c 7808 df-0 7809 df-1 7810 df-r 7812 df-add 7813 df-mul 7814 df-lt 7815 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |