Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vn2 GIF version

Theorem bj-inf2vn2 15467
Description: A sufficient condition for ω to be a set; unbounded version of bj-inf2vn 15466. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vn2 (𝐴𝑉 → (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem bj-inf2vn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem1 15462 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → Ind 𝐴)
2 biimp 118 . . . . . . 7 ((𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (𝑥𝐴 → (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)))
32alimi 1466 . . . . . 6 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑥(𝑥𝐴 → (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)))
4 df-ral 2477 . . . . . 6 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)))
53, 4sylibr 134 . . . . 5 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦))
6 bj-inf2vnlem4 15465 . . . . 5 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑧𝐴𝑧))
75, 6syl 14 . . . 4 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (Ind 𝑧𝐴𝑧))
87alrimiv 1885 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑧(Ind 𝑧𝐴𝑧))
91, 8jca 306 . 2 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧𝐴𝑧)))
10 bj-om 15429 . 2 (𝐴𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧𝐴𝑧))))
119, 10imbitrrid 156 1 (𝐴𝑉 → (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  wal 1362   = wceq 1364  wcel 2164  wral 2472  wrex 2473  wss 3153  c0 3446  suc csuc 4396  ωcom 4622  Ind wind 15418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4155  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-bd0 15305  ax-bdor 15308  ax-bdex 15311  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314  ax-bdsep 15376
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-suc 4402  df-iom 4623  df-bdc 15333  df-bj-ind 15419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator