Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vn2 | GIF version |
Description: A sufficient condition for ω to be a set; unbounded version of bj-inf2vn 13856. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inf2vn2 | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inf2vnlem1 13852 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → Ind 𝐴) | |
2 | biimp 117 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (𝑥 ∈ 𝐴 → (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦))) | |
3 | 2 | alimi 1443 | . . . . . 6 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦))) |
4 | df-ral 2449 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦))) | |
5 | 3, 4 | sylibr 133 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) |
6 | bj-inf2vnlem4 13855 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑧 → 𝐴 ⊆ 𝑧)) | |
7 | 5, 6 | syl 14 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (Ind 𝑧 → 𝐴 ⊆ 𝑧)) |
8 | 7 | alrimiv 1862 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑧(Ind 𝑧 → 𝐴 ⊆ 𝑧)) |
9 | 1, 8 | jca 304 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧 → 𝐴 ⊆ 𝑧))) |
10 | bj-om 13819 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧 → 𝐴 ⊆ 𝑧)))) | |
11 | 9, 10 | syl5ibr 155 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 ∀wal 1341 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 ⊆ wss 3116 ∅c0 3409 suc csuc 4343 ωcom 4567 Ind wind 13808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-bd0 13695 ax-bdor 13698 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |