Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vn2 GIF version

Theorem bj-inf2vn2 14888
Description: A sufficient condition for ω to be a set; unbounded version of bj-inf2vn 14887. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vn2 (𝐴𝑉 → (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem bj-inf2vn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem1 14883 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → Ind 𝐴)
2 biimp 118 . . . . . . 7 ((𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (𝑥𝐴 → (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)))
32alimi 1455 . . . . . 6 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑥(𝑥𝐴 → (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)))
4 df-ral 2460 . . . . . 6 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)))
53, 4sylibr 134 . . . . 5 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦))
6 bj-inf2vnlem4 14886 . . . . 5 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑧𝐴𝑧))
75, 6syl 14 . . . 4 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (Ind 𝑧𝐴𝑧))
87alrimiv 1874 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑧(Ind 𝑧𝐴𝑧))
91, 8jca 306 . 2 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧𝐴𝑧)))
10 bj-om 14850 . 2 (𝐴𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧𝐴𝑧))))
119, 10imbitrrid 156 1 (𝐴𝑉 → (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708  wal 1351   = wceq 1353  wcel 2148  wral 2455  wrex 2456  wss 3131  c0 3424  suc csuc 4367  ωcom 4591  Ind wind 14839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4131  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-bd0 14726  ax-bdor 14729  ax-bdex 14732  ax-bdeq 14733  ax-bdel 14734  ax-bdsb 14735  ax-bdsep 14797
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-suc 4373  df-iom 4592  df-bdc 14754  df-bj-ind 14840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator