Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0sucALT GIF version

Theorem bj-nn0sucALT 13347
Description: Alternate proof of bj-nn0suc 13333, also constructive but from ax-inf2 13345, hence requiring ax-bdsetind 13337. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-nn0sucALT (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-nn0sucALT
Dummy variables 𝑎 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-inf2 13345 . . 3 𝑎𝑦(𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧))
2 vex 2692 . . . . 5 𝑎 ∈ V
3 bdcv 13217 . . . . . 6 BOUNDED 𝑎
43bj-inf2vn 13343 . . . . 5 (𝑎 ∈ V → (∀𝑦(𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧)) → 𝑎 = ω))
52, 4ax-mp 5 . . . 4 (∀𝑦(𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧)) → 𝑎 = ω)
6 eleq2 2204 . . . . . . 7 (𝑎 = ω → (𝑦𝑎𝑦 ∈ ω))
7 rexeq 2630 . . . . . . . 8 (𝑎 = ω → (∃𝑧𝑎 𝑦 = suc 𝑧 ↔ ∃𝑧 ∈ ω 𝑦 = suc 𝑧))
87orbi2d 780 . . . . . . 7 (𝑎 = ω → ((𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧) ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)))
96, 8bibi12d 234 . . . . . 6 (𝑎 = ω → ((𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧)) ↔ (𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧))))
109albidv 1797 . . . . 5 (𝑎 = ω → (∀𝑦(𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧)) ↔ ∀𝑦(𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧))))
11 nfcv 2282 . . . . . . . 8 𝑦𝐴
12 nfv 1509 . . . . . . . 8 𝑦(𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
13 eleq1 2203 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑦 ∈ ω ↔ 𝐴 ∈ ω))
14 eqeq1 2147 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅))
15 suceq 4332 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → suc 𝑧 = suc 𝑥)
1615eqeq2d 2152 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑦 = suc 𝑧𝑦 = suc 𝑥))
1716cbvrexv 2658 . . . . . . . . . . . 12 (∃𝑧 ∈ ω 𝑦 = suc 𝑧 ↔ ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
18 eqeq1 2147 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑦 = suc 𝑥𝐴 = suc 𝑥))
1918rexbidv 2439 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
2017, 19syl5bb 191 . . . . . . . . . . 11 (𝑦 = 𝐴 → (∃𝑧 ∈ ω 𝑦 = suc 𝑧 ↔ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
2114, 20orbi12d 783 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧) ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
2213, 21bibi12d 234 . . . . . . . . 9 (𝑦 = 𝐴 → ((𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) ↔ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))))
23 bi1 117 . . . . . . . . 9 ((𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) → (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
2422, 23syl6bi 162 . . . . . . . 8 (𝑦 = 𝐴 → ((𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) → (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))))
2511, 12, 24spcimgf 2769 . . . . . . 7 (𝐴 ∈ ω → (∀𝑦(𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) → (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))))
2625pm2.43b 52 . . . . . 6 (∀𝑦(𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) → (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
27 peano1 4516 . . . . . . . 8 ∅ ∈ ω
28 eleq1 2203 . . . . . . . 8 (𝐴 = ∅ → (𝐴 ∈ ω ↔ ∅ ∈ ω))
2927, 28mpbiri 167 . . . . . . 7 (𝐴 = ∅ → 𝐴 ∈ ω)
30 bj-peano2 13308 . . . . . . . . 9 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
31 eleq1a 2212 . . . . . . . . . 10 (suc 𝑥 ∈ ω → (𝐴 = suc 𝑥𝐴 ∈ ω))
3231imp 123 . . . . . . . . 9 ((suc 𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
3330, 32sylan 281 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
3433rexlimiva 2547 . . . . . . 7 (∃𝑥 ∈ ω 𝐴 = suc 𝑥𝐴 ∈ ω)
3529, 34jaoi 706 . . . . . 6 ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
3626, 35impbid1 141 . . . . 5 (∀𝑦(𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) → (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
3710, 36syl6bi 162 . . . 4 (𝑎 = ω → (∀𝑦(𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧)) → (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))))
385, 37mpcom 36 . . 3 (∀𝑦(𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧)) → (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
391, 38eximii 1582 . 2 𝑎(𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
40 bj-ex 13140 . 2 (∃𝑎(𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) → (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
4139, 40ax-mp 5 1 (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 698  wal 1330   = wceq 1332  wex 1469  wcel 1481  wrex 2418  Vcvv 2689  c0 3368  suc csuc 4295  ωcom 4512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-nul 4062  ax-pr 4139  ax-un 4363  ax-bd0 13182  ax-bdim 13183  ax-bdor 13185  ax-bdex 13188  ax-bdeq 13189  ax-bdel 13190  ax-bdsb 13191  ax-bdsep 13253  ax-bdsetind 13337  ax-inf2 13345
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-sn 3538  df-pr 3539  df-uni 3745  df-int 3780  df-suc 4301  df-iom 4513  df-bdc 13210  df-bj-ind 13296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator