Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nn0sucALT GIF version

Theorem bj-nn0sucALT 16028
Description: Alternate proof of bj-nn0suc 16014, also constructive but from ax-inf2 16026, hence requiring ax-bdsetind 16018. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-nn0sucALT (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem bj-nn0sucALT
Dummy variables 𝑎 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-inf2 16026 . . 3 𝑎𝑦(𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧))
2 vex 2776 . . . . 5 𝑎 ∈ V
3 bdcv 15898 . . . . . 6 BOUNDED 𝑎
43bj-inf2vn 16024 . . . . 5 (𝑎 ∈ V → (∀𝑦(𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧)) → 𝑎 = ω))
52, 4ax-mp 5 . . . 4 (∀𝑦(𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧)) → 𝑎 = ω)
6 eleq2 2270 . . . . . . 7 (𝑎 = ω → (𝑦𝑎𝑦 ∈ ω))
7 rexeq 2704 . . . . . . . 8 (𝑎 = ω → (∃𝑧𝑎 𝑦 = suc 𝑧 ↔ ∃𝑧 ∈ ω 𝑦 = suc 𝑧))
87orbi2d 792 . . . . . . 7 (𝑎 = ω → ((𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧) ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)))
96, 8bibi12d 235 . . . . . 6 (𝑎 = ω → ((𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧)) ↔ (𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧))))
109albidv 1848 . . . . 5 (𝑎 = ω → (∀𝑦(𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧)) ↔ ∀𝑦(𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧))))
11 nfcv 2349 . . . . . . . 8 𝑦𝐴
12 nfv 1552 . . . . . . . 8 𝑦(𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
13 eleq1 2269 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝑦 ∈ ω ↔ 𝐴 ∈ ω))
14 eqeq1 2213 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅))
15 suceq 4454 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → suc 𝑧 = suc 𝑥)
1615eqeq2d 2218 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑦 = suc 𝑧𝑦 = suc 𝑥))
1716cbvrexv 2740 . . . . . . . . . . . 12 (∃𝑧 ∈ ω 𝑦 = suc 𝑧 ↔ ∃𝑥 ∈ ω 𝑦 = suc 𝑥)
18 eqeq1 2213 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (𝑦 = suc 𝑥𝐴 = suc 𝑥))
1918rexbidv 2508 . . . . . . . . . . . 12 (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
2017, 19bitrid 192 . . . . . . . . . . 11 (𝑦 = 𝐴 → (∃𝑧 ∈ ω 𝑦 = suc 𝑧 ↔ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
2114, 20orbi12d 795 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧) ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
2213, 21bibi12d 235 . . . . . . . . 9 (𝑦 = 𝐴 → ((𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) ↔ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))))
23 biimp 118 . . . . . . . . 9 ((𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) → (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
2422, 23biimtrdi 163 . . . . . . . 8 (𝑦 = 𝐴 → ((𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) → (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))))
2511, 12, 24spcimgf 2855 . . . . . . 7 (𝐴 ∈ ω → (∀𝑦(𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) → (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))))
2625pm2.43b 52 . . . . . 6 (∀𝑦(𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) → (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
27 peano1 4647 . . . . . . . 8 ∅ ∈ ω
28 eleq1 2269 . . . . . . . 8 (𝐴 = ∅ → (𝐴 ∈ ω ↔ ∅ ∈ ω))
2927, 28mpbiri 168 . . . . . . 7 (𝐴 = ∅ → 𝐴 ∈ ω)
30 bj-peano2 15989 . . . . . . . . 9 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
31 eleq1a 2278 . . . . . . . . . 10 (suc 𝑥 ∈ ω → (𝐴 = suc 𝑥𝐴 ∈ ω))
3231imp 124 . . . . . . . . 9 ((suc 𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
3330, 32sylan 283 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
3433rexlimiva 2619 . . . . . . 7 (∃𝑥 ∈ ω 𝐴 = suc 𝑥𝐴 ∈ ω)
3529, 34jaoi 718 . . . . . 6 ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω)
3626, 35impbid1 142 . . . . 5 (∀𝑦(𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) → (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
3710, 36biimtrdi 163 . . . 4 (𝑎 = ω → (∀𝑦(𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧)) → (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))))
385, 37mpcom 36 . . 3 (∀𝑦(𝑦𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧𝑎 𝑦 = suc 𝑧)) → (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
391, 38eximii 1626 . 2 𝑎(𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
40 bj-ex 15812 . 2 (∃𝑎(𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) → (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))
4139, 40ax-mp 5 1 (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 710  wal 1371   = wceq 1373  wex 1516  wcel 2177  wrex 2486  Vcvv 2773  c0 3462  suc csuc 4417  ωcom 4643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-nul 4175  ax-pr 4258  ax-un 4485  ax-bd0 15863  ax-bdim 15864  ax-bdor 15866  ax-bdex 15869  ax-bdeq 15870  ax-bdel 15871  ax-bdsb 15872  ax-bdsep 15934  ax-bdsetind 16018  ax-inf2 16026
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-sn 3641  df-pr 3642  df-uni 3854  df-int 3889  df-suc 4423  df-iom 4644  df-bdc 15891  df-bj-ind 15977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator