| Step | Hyp | Ref
| Expression |
| 1 | | ax-inf2 15706 |
. . 3
⊢
∃𝑎∀𝑦(𝑦 ∈ 𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ 𝑎 𝑦 = suc 𝑧)) |
| 2 | | vex 2766 |
. . . . 5
⊢ 𝑎 ∈ V |
| 3 | | bdcv 15578 |
. . . . . 6
⊢
BOUNDED 𝑎 |
| 4 | 3 | bj-inf2vn 15704 |
. . . . 5
⊢ (𝑎 ∈ V → (∀𝑦(𝑦 ∈ 𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ 𝑎 𝑦 = suc 𝑧)) → 𝑎 = ω)) |
| 5 | 2, 4 | ax-mp 5 |
. . . 4
⊢
(∀𝑦(𝑦 ∈ 𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ 𝑎 𝑦 = suc 𝑧)) → 𝑎 = ω) |
| 6 | | eleq2 2260 |
. . . . . . 7
⊢ (𝑎 = ω → (𝑦 ∈ 𝑎 ↔ 𝑦 ∈ ω)) |
| 7 | | rexeq 2694 |
. . . . . . . 8
⊢ (𝑎 = ω → (∃𝑧 ∈ 𝑎 𝑦 = suc 𝑧 ↔ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) |
| 8 | 7 | orbi2d 791 |
. . . . . . 7
⊢ (𝑎 = ω → ((𝑦 = ∅ ∨ ∃𝑧 ∈ 𝑎 𝑦 = suc 𝑧) ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧))) |
| 9 | 6, 8 | bibi12d 235 |
. . . . . 6
⊢ (𝑎 = ω → ((𝑦 ∈ 𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ 𝑎 𝑦 = suc 𝑧)) ↔ (𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)))) |
| 10 | 9 | albidv 1838 |
. . . . 5
⊢ (𝑎 = ω → (∀𝑦(𝑦 ∈ 𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ 𝑎 𝑦 = suc 𝑧)) ↔ ∀𝑦(𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)))) |
| 11 | | nfcv 2339 |
. . . . . . . 8
⊢
Ⅎ𝑦𝐴 |
| 12 | | nfv 1542 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| 13 | | eleq1 2259 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (𝑦 ∈ ω ↔ 𝐴 ∈ ω)) |
| 14 | | eqeq1 2203 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → (𝑦 = ∅ ↔ 𝐴 = ∅)) |
| 15 | | suceq 4438 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → suc 𝑧 = suc 𝑥) |
| 16 | 15 | eqeq2d 2208 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (𝑦 = suc 𝑧 ↔ 𝑦 = suc 𝑥)) |
| 17 | 16 | cbvrexv 2730 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
ω 𝑦 = suc 𝑧 ↔ ∃𝑥 ∈ ω 𝑦 = suc 𝑥) |
| 18 | | eqeq1 2203 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝐴 → (𝑦 = suc 𝑥 ↔ 𝐴 = suc 𝑥)) |
| 19 | 18 | rexbidv 2498 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ ω 𝑦 = suc 𝑥 ↔ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| 20 | 17, 19 | bitrid 192 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → (∃𝑧 ∈ ω 𝑦 = suc 𝑧 ↔ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| 21 | 14, 20 | orbi12d 794 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → ((𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧) ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))) |
| 22 | 13, 21 | bibi12d 235 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → ((𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) ↔ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))) |
| 23 | | biimp 118 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) → (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))) |
| 24 | 22, 23 | biimtrdi 163 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → ((𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) → (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))) |
| 25 | 11, 12, 24 | spcimgf 2844 |
. . . . . . 7
⊢ (𝐴 ∈ ω →
(∀𝑦(𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) → (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))) |
| 26 | 25 | pm2.43b 52 |
. . . . . 6
⊢
(∀𝑦(𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) → (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))) |
| 27 | | peano1 4631 |
. . . . . . . 8
⊢ ∅
∈ ω |
| 28 | | eleq1 2259 |
. . . . . . . 8
⊢ (𝐴 = ∅ → (𝐴 ∈ ω ↔ ∅
∈ ω)) |
| 29 | 27, 28 | mpbiri 168 |
. . . . . . 7
⊢ (𝐴 = ∅ → 𝐴 ∈
ω) |
| 30 | | bj-peano2 15669 |
. . . . . . . . 9
⊢ (𝑥 ∈ ω → suc 𝑥 ∈
ω) |
| 31 | | eleq1a 2268 |
. . . . . . . . . 10
⊢ (suc
𝑥 ∈ ω →
(𝐴 = suc 𝑥 → 𝐴 ∈ ω)) |
| 32 | 31 | imp 124 |
. . . . . . . . 9
⊢ ((suc
𝑥 ∈ ω ∧
𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
| 33 | 30, 32 | sylan 283 |
. . . . . . . 8
⊢ ((𝑥 ∈ ω ∧ 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
| 34 | 33 | rexlimiva 2609 |
. . . . . . 7
⊢
(∃𝑥 ∈
ω 𝐴 = suc 𝑥 → 𝐴 ∈ ω) |
| 35 | 29, 34 | jaoi 717 |
. . . . . 6
⊢ ((𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥) → 𝐴 ∈ ω) |
| 36 | 26, 35 | impbid1 142 |
. . . . 5
⊢
(∀𝑦(𝑦 ∈ ω ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ ω 𝑦 = suc 𝑧)) → (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))) |
| 37 | 10, 36 | biimtrdi 163 |
. . . 4
⊢ (𝑎 = ω → (∀𝑦(𝑦 ∈ 𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ 𝑎 𝑦 = suc 𝑧)) → (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)))) |
| 38 | 5, 37 | mpcom 36 |
. . 3
⊢
(∀𝑦(𝑦 ∈ 𝑎 ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ 𝑎 𝑦 = suc 𝑧)) → (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))) |
| 39 | 1, 38 | eximii 1616 |
. 2
⊢
∃𝑎(𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
| 40 | | bj-ex 15492 |
. 2
⊢
(∃𝑎(𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) → (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥))) |
| 41 | 39, 40 | ax-mp 5 |
1
⊢ (𝐴 ∈ ω ↔ (𝐴 = ∅ ∨ ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |